This is a complex number libry that can perform some simple operations of complex number. To use it, the libry has to be required in your code. You can use
var Complex = require("Complex")
Complex constructor:
var z = new Complex(real, im);
Arguments:
- real (number) the real part of the number
- im (number) the imaginary part of the number
Function: Complex.from
:
An in line function like Number.from
.
var z = Complex.from(real[, im]);
Arguments:
- real (number): the real part of the number
- im (number, optional): the imaginary part of the number Or
- real (string): a string representation of the number, for example 1+4i
Examples:
var z = Complex.from(2, 4);
var z = Complex.from(5);
var z = Complex.from('2+5i');
Constant: Complex.i
: A instance of the imaginary unit i
var i = Complex.i;
Constant: Complex.one
:
An instance for the real number 1
var one = Complex.one;
Method: fromRect
:
Sets the real and imaginary properties a and b from a + bi
myComplex.fromRect(real, im);
Arguments:
- real (number): the real part of the number
- im (number): the imaginary part of the number
Method: fromPolar
:
Sets the a and b in a + bi from a polar representation.
myComplex.fromPolar(r, phi);
Arguments:
- r (number): the radius/magnitude of the number
- phi (number): the angle/phase of the number
Method: toPrecision
Sets the precision of the numbers. Similar to Number.prototype.toPrecision. Useful before printing the number with the toString
myComplex.toPrecision(k);
Argument:
- k (number): an integer specifying the number of significant digits
Method: toFixed
:
Formats a number using fixed-point notation. Similar to Number.prototype.toFixed. Useful before printing the number with the toString
myComplex.toFixed(k);
Argument:
- k (number): the number of digits to appear after the decimal point; this may be a value between 0 and 20, inclusive, and implementations may optionally support a larger range of values. If this argument is omitted, it is treated as 0
Method: finalize
:
Finalizes the instance. The number will not change and any other method call will return a new instance. Very useful when a complex instance should stay constant. For example the Complex.i variable is a finalized instance.
myComplex.finalize();
Method: magnitude
:
Calculates the magnitude of the complex number
myComplex.magnitude();
Alias:
• abs
Method: angle
:
Calculates the angle with respect to the real axis, in radians.
myComplex.angle();
Aliases • arg • phase
Method: conjugate
:
Calculates the conjugate of the complex number (multiplies the imaginary part with -1)
myComplex.conjugate();
Method: negate
:
Negates the number (multiplies both the real and imaginary part with -1)
myComplex.negate();
Method: multiply
:
Multiplies the number with a real or complex number
myComplex.multiply(z);
Arguments:
- z (number, complex) the number to multiply with
Alias: • mult
Method: divide
:
Divides the number by a real or complex number
myComplex.divide(z);
Arguments:
- z (number, complex): the number to divide by Alias: • div
Method: add
:
Adds a real or complex number
myComplex.add(z);
Arguments:
- z (number, complex): the number to add
Method: subtract
:
Subtracts a real or complex number
myComplex.subtract(z);
Arguments:
- z (number, complex): the number to subtract Alias: • sub
Method: pow
:
Returns the base to the exponent
myComplex.pow(z);
Arguments:
- z (number, complex) the exponent
Method: sqrt
:
Returns the square root
myComplex.sqrt();
Method: log
:
Returns the natural logarithm (base E)
myComplex.log([k]);
Arguments:
- k (number): the actual answer has a multiplicity (ln(z) = ln|z| + arg(z)) where arg(z) can return the same for different angles (every 2*pi), with this argument you can define which answer is required
Method: exp
:
Calculates the e^z where the base is E and the exponential the complex number.
myComplex.exp();
Method: sin
:
Calculates the sine of the complex number
myComplex.sin();
Method: cos
:
Calculates the cosine of the complex number
myComplex.cos();
Method: tan
:
Calculates the tangent of the complex number
myComplex.tan();
Method: sinh
:
Calculates the hyperbolic sine of the complex number
myComplex.sinh();
Method: cosh
:
Calculates the hyperbolic cosine of the complex number
myComplex.cosh();
Method: tanh
:
Calculates the hyperbolic tangent of the complex number
myComplex.tanh();
Method: clone
:
Returns a new Complex instance with the same real and imaginary properties
myComplex.clone();
Method: toString
:
Returns a string representation of the complex number
myComplex.toString();
Examples:
new Complex(1, 2).toString(); // 1+2i
new Complex(0, 1).toString(); // i
new Complex(4, 0).toString(); // 4
new Complex(1, 1).toString(); // 1+i
Method: Equals
:
Checks if the real and imaginary components are equal to the passed in compelex components.
myComplex.equals(z);
Arguments:
- z (number, complex): the complex number to compare with
Examples:
new Complex(1, 4).equals(new Complex(1, 4)); // true
new Complex(1, 4).equals(new Complex(1, 3)); // false