Training huge unsupervised deep neural networks yields to strong progress in the field of Natural Language Processing (NLP). Using these extensively pre-trained networks for particular NLP applications is the current state-of-the-art approach. In this project, we approach the task of ranking possible clarifying questions for a given query. We fine-tuned a pre-trained BERT model to rank the possible clarifying questions in a classification manner. The achieved model scores a top-5 accuracy of 0.4565 on the provided benchmark dataset.
This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires one NVIDIA GeForce RTX 1080 (11GB memory).
- Create conda environment:
conda create --name dl4nlp
source activate dl4nlp
- Install the dependencies:
pip install -r requirements.txt
We use a pretrained BERT-Base by Hugging Face and fine-tune it on the given training dataset. To run training, please use the following command:
python main.py --train
For evaluation on the test set, please use the following command:
python main.py --test
Arguments for training and/or testing:
--train
: Run training on training dataset. Default:True
--val
: Run evaluation during training on validation dataset. Default:True
--test
: Run evaluation on test dataset. Default:True
--cuda-devices
: Set GPU index Default:0
--cpu
: Run everything on CPU. Default:False
--data-parallel
: Use DataParallel. Default:False
--data-root
: Path to dataset folder. Default:data
--train-file-name
: Name of training file name in data-root. Default:training.tsv
--test-file-name
: Name of test file name in data-root. Default:test_set.tsv
--question-bank-name
: Name of question bank file name in data-root. Default:question_bank.tsv
--checkpoints-root
: Path to checkpoints folder. Default:checkpoints
--checkpoint-name
: File name of checkpoint in checkpoints-root to start training or use for testing. Default:None
--runs-root
: Path to output runs folder for tensorboard. Default:runs
--txt-root
: Path to output txt folder for evaluation results. Default:txt
--lr
: Learning rate. Default:1e-5
--betas
: Betas for optimization. Default:(0.9, 0.999)
--weight-decay
: Weight decay. Default:1e-2
--val-start
: Set at which epoch to start validation. Default:0
--val-step
: Set at which epoch rate to valide. Default:1
--val-split
: Use subset of training dataset for validation. Default:0.005
--num-epochs
: Number of epochs for training. Default:10
--batch-size
: Samples per batch. Default:32
--num-workers
: Number of workers. Default:4
--top-k-accuracy
: Evaluation metric with flexible top-k-accuracy. Default:50
--true-label
: True label in dataset. Default:1
--false-label
: False label in dataset. Default:0
User query
:
Tell me about Computers
Propagated clarifying questions
:
- do you like using computers
- do you want to know how to do computer programming
- do you want to see some closeup of a turbine
- are you looking for information on different computer programming languages
- are you referring to a software