Skip to content

open-sciencelab/Intern-WingWing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AFBench 🚀

AFBench: A Large-scale Benchmark for Airfoil Design

  • Training data.
  • baselins models.
  • Evaluation code.
  • DataGen methods.
  • Training code.
  • Pretrain weights.
  • gradio demo codes.

News

  • 2024-09-26: The AFBench has been accepted by NeurIPS 2024 dataset and benchmark track.
  • 2024-07-05: The Wing-Wing Aircraft Wing Generation System makes its debut at WAIC 2024.

📚 Dataset

In our work, we propose a comprehensive 2D airfoil dataset for studying controllable airfoil inverse design. The url for dataset: https://drive.google.com/drive/folders/1SV9Vyb0EisuG0t69YauGUyq0C5gKwRgt?usp=sharing.

💻 Code

Environment

We tested our codebase with PyTorch 1.13.1 and CUDA 11.7. Please install the corresponding versions of PyTorch and CUDA based on your computational resources.

To install the required packages, run:

conda create -n afbench python=3.9
conda activate afbench  
pip install -r requirements.txt

Data Setup

  • Please download the official AF-200K dataset and navigate to the shape directory and extract the data.tar.gz file.

  • The final data structure should be:

AFBench
├── data
│   ├── airfoil
│   │   │── 000000.dat
│   │   │── ...
|   |   |── 199999.dat
|   |── train_split.txt
|   |── val_split.txt
|   |── test_split.txt
|   |── geometry_label.txt

Usage

usage: python evaluate.py

📈 Benchmark and Baseline

Benchmark and Baseline

In our paper, we construct a codebase that encompasses generative methods in airfoil design, including foundational techniques such as cVAE, cGAN as well as advanced models like PK-GAN,PK-VAE,PKVAE-GAN and PK-DiT.

Controllable Airfoil Generation Tasks across Different Datasets

$\sigma_{i}$ represents label error between physical quantities, lower values indicate more constrained quantities.

$\mathcal{D}$ measures generative model diversity, higher values indicate greater diversity.

$\mathcal{M}$ measures the smoothness of generated outputs, lower values indicate smoother generation.

Method Dataset $\sigma_{1}$ $\sigma_{2}$ $\sigma_{3}$ $\sigma_{4}$ $\sigma_{5}$ $\sigma_{6}$ $\sigma_{7}$ $\sigma_{8}$ $\sigma_{9}$ $\sigma_{10}$ $\sigma_{11}$ $\bar{\sigma}$ $\mathcal{D}$ $\uparrow$ $\mathcal{M} \downarrow \times 0.01$
CVAE AF-200K 7.29 5.25 3.52 1590 9.9 9.55 2900 1.91 1.53 4.6 10.4 413.1 -155.4 7.09
CGAN AF-200K 10.7 8.50 5.44 2320 14.3 13.7 5960 2.53 2.23 5.3 12.9 759.6 -120.5 7.31
PK-VAE AF-200K 6.30 4.79 3.13 862 6.6 6.41 1710 1.35 0.93 3.3 7.8 237.5 -150.1 5.93
PK-GAN AF-200K 8.18 6.30 4.70 2103 12.0 11.7 3247 2.25 1.96 5.0 12.7 492.3 -112.3 3.98
PKVAE-GAN AF-200K 5.68 3.17 3.10 565 4.6 4.35 1200 0.91 0.51 2.8 6.3 163.3 -129.6 2.89
PK-DIFF AF-200K 4.61 3.46 2.15 277 2.2 1.93 1030 0.70 0.11 2.4 3.1 120.6 -101.3 1.52
PK-DIT UIUC 6.38 5.14 3.36 1183 8.7 8.49 2570 1.69 1.19 3.6 9.8 345.6 -141.7 6.03
PK-DIT Super 5.20 3.50 2.40 301 2.9 3.32 1050 0.83 0.26 2.7 3.3 125.0 -123.4 1.97
PK-DIT AF-200K 1.12 3.23 1.54 105 1.3 1.15 979 0.05 0.05 2.3 2.4 99.7 -93.2 1.04

Keypoint Editing (EK) and Physical Parameter Editing (EP) Tasks

Method Task $\sigma_{1}$ $\sigma_{2}$ $\sigma_{3}$ $\sigma_{4}$ $\sigma_{5}$ $\sigma_{6}$ $\sigma_{7}$ $\sigma_{8}$ $\sigma_{9}$ $\sigma_{10}$ $\sigma_{11}$ $\bar{\sigma}$ $\mathcal{D}$ $\uparrow$ $\mathcal{M} \downarrow \times 0.01$
PK-VAE EK 9.3 8.33 5.27 2082 12.9 11.1 4620 2.51 2.04 5.1 11.8 615.5 -143.4 7.21
PK-VAE EP 8.9 6.38 4.94 1780 10.9 9.4 4570 2.05 1.98 4.9 10.3 582.6 -150.8 7.19
PK-VAE² EK 7.1 5.71 4.05 1430 8.0 8.1 3780 1.91 1.52 3.6 8.7 478.1 -133.4 6.20
PK-VAE² EP 6.5 5.22 3.57 1010 7.8 7.3 2010 1.52 1.03 3.4 7.9 278.5 -135.6 6.36

🙏 Acknowledgements

I have intensively borrow codes from the following repositories. Many thanks to the authors for sharing their codes.

📧 Contact

If you have any questions, please contact at [[email protected], [email protected]].

⚖ License

This repository is licensed under the Apache-2.0 License.

📌 BibTeX & Citation

If you find this code useful, please consider citing our work:

@misc{liu2024afbenchlargescalebenchmarkairfoil,
      title={AFBench: A Large-scale Benchmark for Airfoil Design}, 
      author={Jian Liu and Jianyu Wu and Hairun Xie and Guoqing Zhang and Jing Wang and Wei Liu and Wanli Ouyang and Junjun Jiang and Xianming Liu and Shixiang Tang and Miao Zhang},
      year={2024},
      eprint={2406.18846},
      archivePrefix={arXiv},
      primaryClass={cs.CE},
      url={https://arxiv.org/abs/2406.18846}, 
}

About

[NeurIPS 2024] AFBench: A Large-scale Benchmark for Airfoil Design

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages