Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Gemini Solver #1503

Merged
merged 8 commits into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 37 additions & 3 deletions evals/completion_fns/openai.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
import logging
from typing import Any, Optional, Union

import openai
from openai import OpenAI

from evals.api import CompletionFn, CompletionResult
Expand All @@ -12,12 +14,44 @@
Prompt,
)
from evals.record import record_sampling
from evals.utils.api_utils import (
openai_chat_completion_create_retrying,
openai_completion_create_retrying,
from evals.utils.api_utils import create_retrying

OPENAI_TIMEOUT_EXCEPTIONS = (
openai.RateLimitError,
openai.APIConnectionError,
openai.APITimeoutError,
openai.InternalServerError,
)


def openai_completion_create_retrying(client: OpenAI, *args, **kwargs):
"""
Helper function for creating a completion.
`args` and `kwargs` match what is accepted by `openai.Completion.create`.
"""
result = create_retrying(
client.completions.create, retry_exceptions=OPENAI_TIMEOUT_EXCEPTIONS, *args, **kwargs
)
if "error" in result:
logging.warning(result)
raise openai.APIError(result["error"])
return result


def openai_chat_completion_create_retrying(client: OpenAI, *args, **kwargs):
"""
Helper function for creating a completion.
`args` and `kwargs` match what is accepted by `openai.Completion.create`.
"""
result = create_retrying(
client.chat.completions.create, retry_exceptions=OPENAI_TIMEOUT_EXCEPTIONS, *args, **kwargs
)
if "error" in result:
logging.warning(result)
raise openai.APIError(result["error"])
return result


class OpenAIBaseCompletionResult(CompletionResult):
def __init__(self, raw_data: Any, prompt: Any):
self.raw_data = raw_data
Expand Down
23 changes: 23 additions & 0 deletions evals/registry/solvers/gemini.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@

# ------------------
# gemini-pro
# ------------------

# generation tasks

generation/direct/gemini-pro:
class: evals.solvers.providers.google.gemini_solver:GeminiSolver
args:
model_name: gemini-pro

generation/cot/gemini-pro:
class: evals.solvers.nested.cot_solver:CoTSolver
args:
cot_solver:
class: evals.solvers.providers.google.gemini_solver:GeminiSolver
args:
model_name: gemini-pro
extract_solver:
class: evals.solvers.providers.google.gemini_solver:GeminiSolver
args:
model_name: gemini-pro
36 changes: 15 additions & 21 deletions evals/solvers/providers/anthropic/anthropic_solver.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,25 @@
from typing import Any, Optional, Union

from evals.solvers.solver import Solver, SolverResult
from evals.task_state import TaskState, Message
from evals.record import record_sampling
from evals.utils.api_utils import request_with_timeout

import anthropic
from anthropic import Anthropic
from anthropic.types import ContentBlock, MessageParam, Usage
import backoff

from evals.record import record_sampling
from evals.solvers.solver import Solver, SolverResult
from evals.task_state import Message, TaskState
from evals.utils.api_utils import create_retrying

oai_to_anthropic_role = {
"system": "user",
"user": "user",
"assistant": "assistant",
}
ANTHROPIC_TIMEOUT_EXCEPTIONS = (
anthropic.RateLimitError,
anthropic.APIConnectionError,
anthropic.APITimeoutError,
anthropic.InternalServerError,
)


class AnthropicSolver(Solver):
Expand Down Expand Up @@ -59,9 +64,7 @@ def _solve(self, task_state: TaskState, **kwargs) -> SolverResult:
)

# for logging purposes: prepend the task desc to the orig msgs as a system message
orig_msgs.insert(
0, Message(role="system", content=task_state.task_description).to_dict()
)
orig_msgs.insert(0, Message(role="system", content=task_state.task_description).to_dict())
record_sampling(
prompt=orig_msgs, # original message format, supported by our logviz
sampled=[solver_result.output],
Expand Down Expand Up @@ -113,23 +116,14 @@ def _convert_msgs_to_anthropic_format(msgs: list[Message]) -> list[MessageParam]
return alt_msgs


@backoff.on_exception(
wait_gen=backoff.expo,
exception=(
anthropic.RateLimitError,
anthropic.APIConnectionError,
anthropic.APITimeoutError,
anthropic.InternalServerError,
),
max_value=60,
factor=1.5,
)
def anthropic_create_retrying(client: Anthropic, *args, **kwargs):
"""
Helper function for creating a backoff-retry enabled message request.
`args` and `kwargs` match what is accepted by `client.messages.create`.
"""
result = request_with_timeout(client.messages.create, *args, **kwargs)
result = create_retrying(
client.messages.create, retry_exceptions=ANTHROPIC_TIMEOUT_EXCEPTIONS, *args, **kwargs
)
if "error" in result:
raise Exception(result["error"])
return result
Expand Down
211 changes: 211 additions & 0 deletions evals/solvers/providers/google/gemini_solver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
import copy
import os
from dataclasses import asdict, dataclass
from typing import Any, Dict, Union

import google.api_core.exceptions
import google.generativeai as genai
from google.generativeai.client import get_default_generative_client

from evals.record import record_sampling
from evals.solvers.solver import Solver, SolverResult
from evals.task_state import Message, TaskState
from evals.utils.api_utils import create_retrying

# Load API key from environment variable
API_KEY = os.environ.get("GEMINI_API_KEY")
genai.configure(api_key=API_KEY)

SAFETY_SETTINGS = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
GEMINI_RETRY_EXCEPTIONS = (
google.api_core.exceptions.RetryError,
google.api_core.exceptions.TooManyRequests,
google.api_core.exceptions.ResourceExhausted,
)


# TODO: Could we just use google's own types?
# e.g. google.generativeai.types.content_types.ContentType
@dataclass
class GoogleMessage:
role: str
parts: list[str]

def to_dict(self):
return asdict(self)

@staticmethod
def from_evals_message(msg: Message):
valid_roles = {"user", "model"}
to_google_role = {
"system": "user", # Google doesn't have a "system" role
"user": "user",
"assistant": "model",
}
gmsg = GoogleMessage(
role=to_google_role.get(msg.role, msg.role),
parts=[msg.content],
)
assert gmsg.role in valid_roles, f"Invalid role: {gmsg.role}"
return gmsg


class GeminiSolver(Solver):
"""
A solver class that uses Google's Gemini API to generate responses.
"""

def __init__(
self,
model_name: str,
generation_config: Dict[str, Any] = {},
postprocessors: list[str] = [],
registry: Any = None,
):
super().__init__(postprocessors=postprocessors)

self.model_name = model_name
self.gen_config = genai.GenerationConfig(**generation_config)

# We manually define the client. This is normally defined automatically when calling
# the API, but it isn't thread-safe, so we anticipate its creation here
self.glm_client = get_default_generative_client()

@property
def model(self) -> str:
return self.model_name

def _solve(
self,
task_state: TaskState,
**kwargs,
) -> SolverResult:
msgs = [
Message(role="user", content=task_state.task_description),
] + task_state.messages
gmsgs = self._convert_msgs_to_google_format(msgs)
gmsgs = [msg.to_dict() for msg in gmsgs]
try:
glm_model = genai.GenerativeModel(model_name=self.model_name)
glm_model._client = self.glm_client

gen_content_resp = create_retrying(
glm_model.generate_content,
retry_exceptions=GEMINI_RETRY_EXCEPTIONS,
**{
"contents": gmsgs,
"generation_config": self.gen_config,
"safety_settings": SAFETY_SETTINGS,
},
)
if gen_content_resp.prompt_feedback.block_reason:
# Blocked by safety filters
solver_result = SolverResult(
str(gen_content_resp.prompt_feedback),
error=gen_content_resp.prompt_feedback,
)
else:
# Get text response
solver_result = SolverResult(
gen_content_resp.text,
error=gen_content_resp.prompt_feedback,
)
except (google.api_core.exceptions.GoogleAPIError,) as e:
solver_result = SolverResult(
e.message,
error=e,
)
except ValueError as e:
# TODO: Why does this error ever occur and how can we handle it better?
# (See google/generativeai/types/generation_types.py for the triggers)
known_errors = [
"The `response.text` quick accessor",
"The `response.parts` quick accessor",
]
if any(err in str(e) for err in known_errors):
solver_result = SolverResult(
str(e),
error=e,
)
else:
raise e

record_sampling(
prompt=msgs,
sampled=[solver_result.output],
model=self.model,
)
return solver_result

@staticmethod
def _convert_msgs_to_google_format(msgs: list[Message]) -> list[GoogleMessage]:
"""
Gemini API requires that the message list has
- Roles as 'user' or 'model'
- Alternating 'user' and 'model' messages
- Ends with a 'user' message
"""
# Enforce valid roles
gmsgs = []
for msg in msgs:
gmsg = GoogleMessage.from_evals_message(msg)
gmsgs.append(gmsg)
assert gmsg.role in {"user", "model"}, f"Invalid role: {gmsg.role}"

# Enforce alternating messages
# e.g. [user1, user2, model1, user3] -> [user12, model1, user3]
std_msgs = []
for msg in gmsgs:
if len(std_msgs) > 0 and msg.role == std_msgs[-1].role:
# Merge consecutive messages from the same role
std_msgs[-1].parts.extend(msg.parts)
# The API seems to expect a single-element list of strings (???) so we join the
# parts into a list containing a single string
std_msgs[-1].parts = ["\n".join(std_msgs[-1].parts)]
else:
# Proceed as normal
std_msgs.append(msg)

# Enforce last message is from the user
assert std_msgs[-1].role == "user", "Last message must be from the user"
return std_msgs

@property
def name(self) -> str:
return self.model

@property
def model_version(self) -> Union[str, dict]:
return self.model

def __deepcopy__(self, memo):
"""
Deepcopy everything except for self.glm_client, which is instead shared across all copies
"""
cls = self.__class__
result = cls.__new__(cls)

memo[id(self)] = result
for k, v in self.__dict__.items():
if k != "glm_client":
setattr(result, k, copy.deepcopy(v, memo))

result.glm_client = self.glm_client
return result
Loading
Loading