Skip to content

Commit

Permalink
Machine Learning Optimization Template (idea-fasoc#238)
Browse files Browse the repository at this point in the history
Squash and merge of ML template PR idea-fasoc#238
  • Loading branch information
Wen-Tian-Pineapple authored Nov 9, 2023
1 parent f9565d2 commit da1818a
Show file tree
Hide file tree
Showing 8 changed files with 638 additions and 0 deletions.
46 changes: 46 additions & 0 deletions openfasoc/MLoptimization/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Machine Learning Optimization
Code for reinforcement learning loop with openfasoc generators for optimizing metrics

## Code Setup
The code is setup as follows:

The top level directory contains two sub-directories:
* model.py: top level RL script, used to set hyperparameters and run training
* run_training.py: contains all OpenAI Gym environments. These function as the agent in the RL loop and contain information about parameter space, valid action steps and reward.
* eval.py: contains all of the code for evaluation
* gen_spec.py: contains all of the random specification generation

## Training
Make sure that you have OpenAI Gym and Ray installed. To do this, run the following command:

To generate the design specifications that the agent trains on, run:
```
python3.10 gen_specs.py
```
The result is a yaml file dumped to the ../generators/gdsfactory-gen/.

To train the agent, open ipython from the top level directory and then:
```
python3.10 model.py
```
The training checkpoints will be saved in your home directory under ray\_results. Tensorboard can be used to load reward and loss plots using the command:

```
tensorboard --logdir path/to/checkpoint
```

## Validation
The evaluation script takes the trained agent and gives it new specs that the agent has never seen before. To generate new design specs, run the gen_specs.py file again with your desired number of specs to validate on. To run validation:

```
python3.10 eval.py
```

The evaluation result will be saved to the ../generators/gdsfactory-gen/.

## Results
Please note that results vary greatly based on random seed and spec generation (both for testing and validation). An example spec file is provided that was used to generate the results below.

<p float="left">
<img src="image1.png" width="400" /> <img src="image2.png" width="400" />
</p>
118 changes: 118 additions & 0 deletions openfasoc/MLoptimization/eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
#training import
import numpy as np
import gym
import ray
import ray.tune as tune
from ray.rllib.algorithms.ppo import PPO
from run_training import Envir
from ../generators/gdsfactory-gen/sky130_nist_tapeout import single_build_and_simulation
import pickle
import yaml
from pathlib import Path
import argparse

def unlookup(norm_spec, goal_spec):
spec = -1*np.multiply((norm_spec+1), goal_spec)/(norm_spec-1)
return spec

specs = yaml.safe_load(Path('newnew_eval_3.yaml').read_text())

#
#training set up
env_config = {
"generalize":True,
"num_valid":2,
"save_specs":False,
"inputspec":specs,
"run_valid":True,
"horizon":25,
}

config_eval = {
#"sample_batch_size": 200,
"env": Envir,
"env_config":{
"generalize":True,
"num_valid":2,
"save_specs":False,
"inputspec":specs,
"run_valid":True,
"horizon":25,
},
}

parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', '-cpd', type=str)
args = parser.parse_args()
env = Envir(env_config=env_config)

agent = PPO.from_checkpoint("/home/wentian/ray_results/brandnewBound_1/PPO_Envir_7fc09_00000_0_2023-08-18_20-40-42/checkpoint_000015")



norm_spec_ref = env.global_g
spec_num = len(env.specs)


rollouts = []
next_states = []
obs_reached = []
obs_nreached = []
action_array = []
action_arr_comp = []
rollout_steps = 0
reached_spec = 0
f = open("newnewnew_eval__3.txt", "a")

while rollout_steps < 100:
rollout_num = []
state, info = env.reset()

done = False
truncated = False
reward_total = 0.0
steps=0
f.write('new----------------------------------------')
while not done and not truncated:
action = agent.compute_single_action(state)
action_array.append(action)

next_state, reward, done, truncated, info = env.step(action)
f.write(str(action)+'\n')
f.write(str(reward)+'\n')
f.write(str(done)+'n')
print(next_state)
print(action)
print(reward)
print(done)
reward_total += reward

rollout_num.append(reward)
next_states.append(next_state)

state = next_state

norm_ideal_spec = state[spec_num:spec_num+spec_num]
ideal_spec = unlookup(norm_ideal_spec, norm_spec_ref)
if done == True:
reached_spec += 1
obs_reached.append(ideal_spec)
action_arr_comp.append(action_array)
action_array = []
pickle.dump(action_arr_comp, open("action_arr_test", "wb"))
else:
obs_nreached.append(ideal_spec) #save unreached observation
action_array=[]
f.write('done----------------------------------------')
rollouts.append(rollout_num)
print("Episode reward", reward_total)
rollout_steps+=1
#if out is not None:
#pickle.dump(rollouts, open(str(out)+'reward', "wb"))
pickle.dump(obs_reached, open("opamp_obs_reached_test","wb"))
pickle.dump(obs_nreached, open("opamp_obs_nreached_test","wb"))

f.write("Specs reached: " + str(reached_spec) + "/" + str(len(obs_nreached)))
print("Specs reached: " + str(reached_spec) + "/" + str(len(obs_nreached)))

print("Num specs reached: " + str(reached_spec) + "/" + str(1))
41 changes: 41 additions & 0 deletions openfasoc/MLoptimization/gen_spec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
#!/usr/bin/env python3
## Generate the design specifications and then save to a pickle file

import numpy as np
import random
import yaml
import os
import argparse

def gen_data(env, num_specs):

specs_range = {
"gain_min" : [float(1000338000.0), float(3000338000.0)],
"FOM" : [float(5*10**11), float(5*10**11)]
}
specs_range_vals = list(specs_range.values())
specs_valid = []
for spec in specs_range_vals:
if isinstance(spec[0],int):
list_val = [random.randint(int(spec[0]),int(spec[1])) for x in range(0,num_specs)]
else:
list_val = [random.uniform(float(spec[0]),float(spec[1])) for x in range(0,num_specs)]
specs_valid.append(tuple(list_val))
i=0
for key,value in specs_range.items():
specs_range[key] = specs_valid[i]
i+=1

output = str(specs_range)
with open(env, 'w') as f:
f.write(output.replace('(','[').replace(')',']').replace(',',',\n'))

def main():
parser = argparse.ArgumentParser()
parser.add_argument('--num_specs', type=str)
args = parser.parse_args()

gen_data("newnew_eval_3.yaml", int(50))

if __name__=="__main__":
main()
Binary file added openfasoc/MLoptimization/image1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added openfasoc/MLoptimization/image2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
47 changes: 47 additions & 0 deletions openfasoc/MLoptimization/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
#training import
import gym
import ray
import ray.tune as tune
from ray.rllib.algorithms.ppo import PPO
from run_training import Envir
from sky130_nist_tapeout import single_build_and_simulation
sky130_nist_tapeout.path.append('../generators/gdsfactory-gen/')

import argparse
#
#training set up
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', '-cpd', type=str)
args = parser.parse_args()
ray.init(num_cpus=33, num_gpus=0,include_dashboard=True, ignore_reinit_error=True)

#configures training of the agent with associated hyperparameters
config_train = {
#"sample_batch_size": 200,
"env": Envir,
"train_batch_size": 1000,
#"sgd_minibatch_size": 1200,
#"num_sgd_iter": 3,
#"lr":1e-3,
#"vf_loss_coeff": 0.5,
#"rollout_fragment_length": 63,
"model":{"fcnet_hiddens": [64, 64]},
"num_workers": 32,
"env_config":{"generalize":True, "run_valid":False, "horizon":20},
}

#Runs training and saves the result in ~/ray_results/train_ngspice_45nm
#If checkpoint fails for any reason, training can be restored
trials = tune.run(
"PPO", #You can replace this string with ppo.PPOTrainer if you want / have customized it
name="brandnewBound_1", # The name can be different.
stop={"episode_reward_mean": 12, "training_iteration": 15},
checkpoint_freq=1,
config=config_train,
#restore="/home/wentian/ray_results/brandnewBound/PPO_Envir_cc8be_00000_0_2023-08-16_01-11-16/checkpoint_000002",
#restore="/home/wentian/ray_results/brandnewBound/PPO_Envir_f6236_00000_0_2023-08-16_04-40-01/checkpoint_000003",
#restore="/home/wentian/ray_results/brandnewBound/PPO_Envir_4615a_00000_0_2023-08-16_06-58-15/checkpoint_000006"
#restore="/home/wentian/ray_results/brandnewBound/PPO_Envir_d8b02_00000_0_2023-08-17_02-07-41/checkpoint_000012",
restore="/home/wentian/ray_results/brandnewBound_1/PPO_Envir_d6a0f_00000_0_2023-08-18_05-19-43/checkpoint_000012",
)
#
Loading

0 comments on commit da1818a

Please sign in to comment.