-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
69 additions
and
231 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,81 +1,77 @@ | ||
--- | ||
author: Hiroaki Natsume | ||
title: MOEA/D sampler | ||
description: Sampler using MOEA/D algorithm. MOEA/D stands for "Multi-Objective Evolutionary Algorithm based on Decomposition. | ||
tags: [Sampler, Multi-Objective Optimization, Evolutionary Algorithms] | ||
title: NSGAII sampler with Initial Trials | ||
description: Sampler using NSGAII algorithm with initial trials. | ||
tags: [Sampler, Multi-Objective, Genetic Algorithm] | ||
optuna_versions: [4.0.0] | ||
license: MIT License | ||
--- | ||
|
||
## Abstract | ||
|
||
Sampler using MOEA/D algorithm. MOEA/D stands for "Multi-Objective Evolutionary Algorithm based on Decomposition. | ||
If Optuna's built-in NSGAII has a study obtained from another sampler, but continues with that study, it cannot be used as the first generation, and optimization starts from zero. | ||
This means that even if you already know good individuals, you cannot use it in the GA. | ||
In this implementation, the already sampled results are included in the initial individuals of the GA to perform the optimization. | ||
|
||
This sampler is specialized for multiobjective optimization. The objective function is internally decomposed into multiple single-objective subproblems to perform optimization. | ||
|
||
It may not work well with multi-threading. Check results carefully. | ||
Note, however, that this has the effect that the implementation does not necessarily support multi-threading in the generation of the initial generation. | ||
After the initial generation, the implementation is similar to the built-in NSGAII. | ||
|
||
## Class or Function Names | ||
|
||
- MOEADSampler | ||
|
||
## Installation | ||
|
||
``` | ||
pip install scipy | ||
``` | ||
|
||
or | ||
|
||
``` | ||
pip install -r https://hub.optuna.org/samplers/moead/requirements.txt | ||
``` | ||
- NSGAIIwITSampler | ||
|
||
## Example | ||
|
||
```python | ||
import optuna | ||
import optunahub | ||
|
||
|
||
def objective(trial: optuna.Trial) -> tuple[float, float]: | ||
x = trial.suggest_float("x", 0, 5) | ||
y = trial.suggest_float("y", 0, 3) | ||
|
||
v0 = 4 * x**2 + 4 * y**2 | ||
v1 = (x - 5) ** 2 + (y - 5) ** 2 | ||
return v0, v1 | ||
|
||
|
||
population_size = 100 | ||
n_trials = 1000 | ||
storage = optuna.storages.InMemoryStorage() | ||
|
||
mod = optunahub.load_module("samplers/moead") | ||
sampler = mod.MOEADSampler( | ||
population_size=population_size, | ||
scalar_aggregation_func="tchebycheff", | ||
n_neighbors=population_size // 10, | ||
# Sampling 0 generation using enqueueing & qmc sampler | ||
study = optuna.create_study( | ||
directions=["minimize", "minimize"], | ||
sampler=optuna.samplers.QMCSampler(seed=42), | ||
study_name="test", | ||
storage=storage, | ||
) | ||
study.enqueue_trial( | ||
{ | ||
"x": 0, | ||
"y": 0, | ||
} | ||
) | ||
study.optimize(objective, n_trials=128) | ||
|
||
# Using sampling results as the initial generation | ||
sampler = optunahub.load_module( | ||
"samplers/nsgaii_with_initial_trials", | ||
).NSGAIIwITSampler(population_size=25, seed=42) | ||
|
||
study = optuna.create_study( | ||
directions=["minimize", "minimize"], | ||
sampler=sampler, | ||
study_name="test", | ||
storage=storage, | ||
load_if_exists=True, | ||
) | ||
study = optuna.create_study(sampler=sampler) | ||
study.optimize(objective, n_trials=n_trials) | ||
study.optimize(objective, n_trials=100) | ||
|
||
optuna.visualization.plot_pareto_front(study).show() | ||
``` | ||
|
||
## Others | ||
|
||
Comparison between Random, NSGAII and MOEA/D with ZDT1 as the objective function. | ||
See `compare_2objective.py` in moead directory for details. | ||
|
||
### Pareto Front Plot | ||
|
||
| MOEA/D | NSGAII | Random | | ||
| --------------------------- | ---------------------------- | ---------------------------- | | ||
| ![MOEA/D](images/moead.png) | ![NSGAII](images/nsgaii.png) | ![Random](images/random.png) | | ||
|
||
### Compare | ||
|
||
![Compare](images/compare_pareto_front.png) | ||
|
||
### Reference | ||
The implementation is similar to Optuna's NSGAII except for the handling of initial generations. The license and documentation are below. | ||
|
||
Q. Zhang and H. Li, | ||
"MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition," in IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712-731, Dec. 2007, | ||
[doi: 10.1109/TEVC.2007.892759](https://doi.org/10.1109/TEVC.2007.892759). | ||
- [Documentation](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html) | ||
- [License](https://github.com/optuna/optuna/blob/master/LICENSE) |
210 changes: 26 additions & 184 deletions
210
package/samplers/nsgaii_with_initial_trials/example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,202 +1,44 @@ | ||
import numpy as np | ||
import optuna | ||
from optuna.samplers import NSGAIISampler | ||
from optuna.samplers.nsgaii import BLXAlphaCrossover | ||
import optuna.storages.journal | ||
import optunahub | ||
|
||
from nsgaii_with_initial_trials import NSGAIIwITSampler | ||
|
||
|
||
file_path = "./journal.log" | ||
lock_obj = optuna.storages.journal.JournalFileOpenLock(file_path) | ||
|
||
storage = optuna.storages.JournalStorage( | ||
optuna.storages.journal.JournalFileBackend(file_path, lock_obj=lock_obj), | ||
) | ||
|
||
storage = optuna.storages.InMemoryStorage() | ||
|
||
|
||
def objective(trial: optuna.Trial) -> tuple[float, float]: | ||
# ZDT1 | ||
n_variables = 30 | ||
|
||
x = np.array([trial.suggest_float(f"x{i}", 0, 1) for i in range(n_variables)]) | ||
g = 1 + 9 * np.sum(x[1:]) / (n_variables - 1) | ||
f1 = x[0] | ||
f2 = g * (1 - (f1 / g) ** 0.5) | ||
|
||
return f1, f2 | ||
|
||
|
||
population_size = 50 | ||
n_trials = 1000 | ||
seed = 42 | ||
x = trial.suggest_float("x", 0, 5) | ||
y = trial.suggest_float("y", 0, 3) | ||
v0 = 4 * x**2 + 4 * y**2 | ||
v1 = (x - 5) ** 2 + (y - 5) ** 2 | ||
return v0, v1 | ||
|
||
|
||
samplers = [ | ||
NSGAIISampler( | ||
population_size=population_size, | ||
seed=seed, | ||
crossover=BLXAlphaCrossover(), | ||
), | ||
# NSGAIIwITSampler( | ||
# population_size=population_size, | ||
# seed=seed, | ||
# crossover=BLXAlphaCrossover(), | ||
# ), | ||
NSGAIIwITSampler( | ||
population_size=population_size, | ||
seed=seed, | ||
crossover=BLXAlphaCrossover(), | ||
), | ||
] | ||
|
||
studies = [] | ||
title = ["NSGAII", "NSGAIIwInitialTrials"] | ||
for i, sampler in enumerate(samplers): | ||
study = optuna.create_study( | ||
sampler=sampler, | ||
study_name=title[i], | ||
directions=["minimize", "minimize"], | ||
storage=storage, | ||
) | ||
|
||
if i == 1: | ||
study.enqueue_trial( | ||
{ | ||
"x0": 0, | ||
"x1": 1, | ||
"x2": 0, | ||
"x3": 0, | ||
"x4": 0, | ||
"x5": 0, | ||
"x6": 0, | ||
"x7": 0, | ||
"x8": 0, | ||
"x9": 0, | ||
"x10": 0, | ||
"x11": 0, | ||
"x12": 0, | ||
"x13": 0, | ||
"x14": 0, | ||
"x15": 0, | ||
"x16": 0, | ||
"x17": 0, | ||
"x18": 0, | ||
"x19": 0, | ||
"x20": 0, | ||
"x21": 0, | ||
"x22": 0, | ||
"x23": 0, | ||
"x24": 0, | ||
"x25": 0, | ||
"x26": 0, | ||
"x27": 0, | ||
"x28": 0, | ||
"x29": 0, | ||
} | ||
) | ||
study.enqueue_trial( | ||
{ | ||
"x0": 0.5, | ||
"x1": 1, | ||
"x2": 0, | ||
"x3": 0, | ||
"x4": 0, | ||
"x5": 0, | ||
"x6": 0, | ||
"x7": 0, | ||
"x8": 0, | ||
"x9": 0, | ||
"x10": 0, | ||
"x11": 0, | ||
"x12": 0, | ||
"x13": 0, | ||
"x14": 0, | ||
"x15": 0, | ||
"x16": 0, | ||
"x17": 0, | ||
"x18": 0, | ||
"x19": 0, | ||
"x20": 0, | ||
"x21": 0, | ||
"x22": 0, | ||
"x23": 0, | ||
"x24": 0, | ||
"x25": 0, | ||
"x26": 0, | ||
"x27": 0, | ||
"x28": 0, | ||
"x29": 0, | ||
} | ||
) | ||
study.enqueue_trial( | ||
{ | ||
"x0": 1, | ||
"x1": 1, | ||
"x2": 0, | ||
"x3": 0, | ||
"x4": 0, | ||
"x5": 0, | ||
"x6": 0, | ||
"x7": 0, | ||
"x8": 0, | ||
"x9": 0, | ||
"x10": 0, | ||
"x11": 0, | ||
"x12": 0, | ||
"x13": 0, | ||
"x14": 0, | ||
"x15": 0, | ||
"x16": 0, | ||
"x17": 0, | ||
"x18": 0, | ||
"x19": 0, | ||
"x20": 0, | ||
"x21": 0, | ||
"x22": 0, | ||
"x23": 0, | ||
"x24": 0, | ||
"x25": 0, | ||
"x26": 0, | ||
"x27": 0, | ||
"x28": 0, | ||
"x29": 0, | ||
} | ||
) | ||
|
||
study.optimize(objective, n_trials=n_trials) | ||
studies.append(study) | ||
|
||
optuna.visualization.plot_pareto_front(study).show() | ||
|
||
sampler1 = optuna.samplers.QMCSampler(seed=seed, qmc_type="halton", scramble=True) | ||
storage = optuna.storages.InMemoryStorage() | ||
# Sampling 0 generation using enqueueing & qmc sampler | ||
study = optuna.create_study( | ||
sampler=sampler1, | ||
study_name="Random+NSGAII", | ||
directions=["minimize", "minimize"], | ||
sampler=optuna.samplers.QMCSampler(seed=42), | ||
study_name="test", | ||
storage=storage, | ||
) | ||
study.optimize(objective, n_trials=2 * n_trials) | ||
sampler2 = NSGAIIwITSampler( | ||
population_size=population_size, | ||
seed=seed, | ||
crossover=BLXAlphaCrossover(), | ||
study.enqueue_trial( | ||
{ | ||
"x": 0, | ||
"y": 0, | ||
} | ||
) | ||
study.optimize(objective, n_trials=128) | ||
|
||
# Using previous sampling results as the initial generation, | ||
# sampled by NSGAII. | ||
sampler = optunahub.load_module( | ||
"samplers/nsgaii_with_initial_trials", | ||
).NSGAIIwITSampler(population_size=25, seed=42) | ||
|
||
study = optuna.create_study( | ||
sampler=sampler2, | ||
study_name="Random+NSGAII", | ||
directions=["minimize", "minimize"], | ||
sampler=sampler, | ||
study_name="test", | ||
storage=storage, | ||
load_if_exists=True, | ||
) | ||
study.optimize(objective, n_trials=n_trials // 2) | ||
optuna.visualization.plot_pareto_front(study).show() | ||
studies.append(study) | ||
study.optimize(objective, n_trials=100) | ||
|
||
|
||
m = optunahub.load_module("visualization/plot_pareto_front_multi") | ||
fig = m.plot_pareto_front(studies) | ||
fig.show() | ||
optuna.visualization.plot_pareto_front(study).show() |