Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
eukaryo authored Dec 4, 2024
1 parent 0aafcc7 commit 3f5df46
Show file tree
Hide file tree
Showing 5 changed files with 198 additions and 0 deletions.
21 changes: 21 additions & 0 deletions package/samplers/hebo_base_sampler/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Hiroki Takizawa

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
4 changes: 4 additions & 0 deletions package/samplers/hebo_base_sampler/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from .sampler import HEBOSampler


__all__ = ["HEBOSampler"]
24 changes: 24 additions & 0 deletions package/samplers/hebo_base_sampler/example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import optuna
import optunahub
import time


module = optunahub.load_module("samplers/hebo_base_sampler")
HEBOSampler = module.HEBOSampler


def objective(trial: optuna.trial.Trial) -> float:
x = trial.suggest_float("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
time.sleep(1.0)
return x**2 + y**2


if __name__ == "__main__":
sampler = HEBOSampler(constant_liar=True)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=100, n_jobs=2)
print(study.best_trial.params)

fig = optuna.visualization.plot_optimization_history(study)
fig.write_image("hebo_optimization_history.png")
3 changes: 3 additions & 0 deletions package/samplers/hebo_base_sampler/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
optuna
optunahub
hebo@git+https://github.com/huawei-noah/[email protected]#subdirectory=HEBO
146 changes: 146 additions & 0 deletions package/samplers/hebo_base_sampler/sampler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
from __future__ import annotations

import numpy as np
import optuna
import pandas as pd
from optuna.distributions import (BaseDistribution, CategoricalDistribution,
FloatDistribution, IntDistribution)
from optuna.samplers import BaseSampler
from optuna.search_space import IntersectionSearchSpace
from optuna.study import Study
from optuna.study._study_direction import StudyDirection
from optuna.trial import FrozenTrial, TrialState

from hebo.design_space.design_space import DesignSpace
from hebo.optimizers.hebo import HEBO


class HEBOSampler(BaseSampler): # type: ignore
def __init__(
self,
seed: int | None = None,
constant_liar: bool = False,
independent_sampler: BaseSampler | None = None,
) -> None:
self._seed = seed
self._intersection_search_space = IntersectionSearchSpace()
self._independent_sampler = (
independent_sampler or optuna.samplers.RandomSampler(seed=seed)
)
self._constant_liar = constant_liar

def sample_relative(
self,
study: Study,
trial: FrozenTrial,
search_space: dict[str, BaseDistribution],
) -> dict[str, float]:
if self._constant_liar:
target_states = [TrialState.COMPLETE, TrialState.RUNNING]
else:
target_states = [TrialState.COMPLETE]
trials = study.get_trials(deepcopy=False, states=target_states)
if len(t for t in trials if t.state == TrialState.COMPLETE) < 1:
return {}

# Assume that the back-end HEBO implementation aims to minimize.
if study.direction == StudyDirection.MINIMIZE:
worst_values = max(
t.values for t in trials if t.state == TrialState.COMPLETE
)
else:
worst_values = min(
t.values for t in trials if t.state == TrialState.COMPLETE
)
sign = 1.0 if study.direction == StudyDirection.MINIMIZE else -1.0

hebo = HEBO(self._convert_to_hebo_design_space(search_space))
for t in trials:
hebo_params = {name: t.params[name] for name in search_space.keys()}
if t.state == TrialState.COMPLETE:
hebo.observe(pd.DataFrame([hebo_params]), np.asarray([t.values * sign]))
elif t.state == TrialState.RUNNING:
# If `constant_liar == True`, assume that the RUNNING params result in bad values,
# thus preventing the simultaneous suggestion of (almost) the same params
# during parallel execution.
hebo.observe(pd.DataFrame([hebo_params]), np.asarray([worst_values]))
else:
assert False
params_pd = hebo.suggest()
params = {}
for name in search_space.keys():
params[name] = params_pd[name].to_numpy()[0]
return params

def _convert_to_hebo_design_space(
self, search_space: dict[str, BaseDistribution]
) -> DesignSpace:
design_space = []
for name, distribution in search_space.items():
if isinstance(distribution, FloatDistribution) and not distribution.log:
design_space.append(
{
"name": name,
"type": "num",
"lb": distribution.low,
"ub": distribution.high,
}
)
elif isinstance(distribution, FloatDistribution) and distribution.log:
design_space.append(
{
"name": name,
"type": "pow",
"lb": distribution.low,
"ub": distribution.high,
}
)
elif isinstance(distribution, IntDistribution) and distribution.log:
design_space.append(
{
"name": name,
"type": "pow_int",
"lb": distribution.low,
"ub": distribution.high,
}
)
elif isinstance(distribution, IntDistribution) and distribution.step:
design_space.append(
{
"name": name,
"type": "step_int",
"lb": distribution.low,
"ub": distribution.high,
"step": distribution.step,
}
)
elif isinstance(distribution, IntDistribution):
design_space.append(
{
"name": name,
"type": "int",
"lb": distribution.low,
"ub": distribution.high,
}
)
elif isinstance(distribution, CategoricalDistribution):
design_space.append(
{
"name": name,
"type": "cat",
"categories": distribution.choices,
}
)
else:
raise NotImplementedError(f"Unsupported distribution: {distribution}")
return DesignSpace().parse(design_space)

def infer_relative_search_space(self, study, trial):
return optuna.search_space.intersection_search_space(
study.get_trials(deepcopy=False)
)

def sample_independent(self, study, trial, param_name, param_distribution):
return self._independent_sampler.sample_independent(
study, trial, param_name, param_distribution
)

0 comments on commit 3f5df46

Please sign in to comment.