Skip to content

Commit

Permalink
Merge pull request #134 from Yamaguchi447/feature/ud
Browse files Browse the repository at this point in the history
add ud_sampler
  • Loading branch information
y0z authored Aug 7, 2024
2 parents 40c803d + 85fb277 commit f42ac05
Show file tree
Hide file tree
Showing 6 changed files with 368 additions and 0 deletions.
21 changes: 21 additions & 0 deletions package/samplers/uniform_design/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Yotaro Yamaguchi

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
95 changes: 95 additions & 0 deletions package/samplers/uniform_design/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
---
author: Yotaro Yamaguchi
title: Uniform Design Sampler
description: A sampler based on the uniform design algorithm.
tags: [sampler, design of experiments]
optuna_versions: [3.6.1.]
license: MIT License
---

## Abstract

This package provides an implementation of the uniform design (UD) algorithm.
UD is a variety of design-of-experiment (DOE) methods, and it has better sample efficiency than simple random sampling.

## Class or Function Names

- UniformDesignSampler

## Installation

```shell
$ pip install -r requirements.txt
```

## Example

```python
import matplotlib.pyplot as plt
import numpy as np
import optuna
import optunahub
from optuna.distributions import FloatDistribution


module = optunahub.load_module("samplers/uniform_design")
UniformDesignSampler = module.UniformDesignSampler



def objective(trial):
x = trial.suggest_float("x", 0, 1)
y = trial.suggest_float("y", 0, 1)
obj = 2 * np.cos(10 * x) * np.sin(10 * y) + np.sin(10 * x * y)
return obj


def objective_show(parameters):
x1 = parameters["x"]
x2 = parameters["y"]
obj = 2 * np.cos(10 * x1) * np.sin(10 * x2) + np.sin(10 * x1 * x2)
return obj


# Define the search space
search_space = {"x": FloatDistribution(0, 1), "y": FloatDistribution(0, 1)}

# Create the study
discretization_level = 20
sampler = UniformDesignSampler(search_space, discretization_level)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=40, n_jobs=2)

logs = study.trials_dataframe()


def plot_trajectory(xlim, ylim, func, logs, title):
grid_num = 25
xlist = np.linspace(xlim[0], xlim[1], grid_num)
ylist = np.linspace(ylim[0], ylim[1], grid_num)
X, Y = np.meshgrid(xlist, ylist)
Z = np.zeros((grid_num, grid_num))
for i, x in enumerate(xlist):
for j, y in enumerate(ylist):
Z[j, i] = func({"x": x, "y": y})

cp = plt.contourf(X, Y, Z)
plt.scatter(logs.loc[:, ["params_x"]], logs.loc[:, ["params_y"]], color="red")
plt.xlim(xlim[0], xlim[1])
plt.ylim(ylim[0], ylim[1])
plt.colorbar(cp)
plt.xlabel("x")
plt.ylabel("y")
plt.title(title)


plot_trajectory([0, 1], [0, 1], objective_show, logs, "UD")
plt.show()
```

## Others

### Reference

Kai-Tai Fang, Dennis KJ Lin, Peter Winker, and Yong Zhang. Uniform design: theory and
application. Technometrics, 42(3):237–248, 2000.
4 changes: 4 additions & 0 deletions package/samplers/uniform_design/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from .uniform_design import UniformDesignSampler


__all__ = ["UniformDesignSampler"]
60 changes: 60 additions & 0 deletions package/samplers/uniform_design/example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# mypy: ignore-errors
import matplotlib.pyplot as plt
import numpy as np
import optuna
from optuna.distributions import FloatDistribution
import optunahub


module = optunahub.load_module("samplers/uniform_design")
UniformDesignSampler = module.UniformDesignSampler


def objective(trial):
x = trial.suggest_float("x", 0, 1)
y = trial.suggest_float("y", 0, 1)
obj = 2 * np.cos(10 * x) * np.sin(10 * y) + np.sin(10 * x * y)
return obj


def objective_show(parameters):
x1 = parameters["x"]
x2 = parameters["y"]
obj = 2 * np.cos(10 * x1) * np.sin(10 * x2) + np.sin(10 * x1 * x2)
return obj


# Define the search space
search_space = {"x": FloatDistribution(0, 1), "y": FloatDistribution(0, 1)}

# Create the study
discretization_level = 20
sampler = UniformDesignSampler(search_space, discretization_level)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=40, n_jobs=2)

logs = study.trials_dataframe()


def plot_trajectory(xlim, ylim, func, logs, title):
grid_num = 25
xlist = np.linspace(xlim[0], xlim[1], grid_num)
ylist = np.linspace(ylim[0], ylim[1], grid_num)
X, Y = np.meshgrid(xlist, ylist)
Z = np.zeros((grid_num, grid_num))
for i, x in enumerate(xlist):
for j, y in enumerate(ylist):
Z[j, i] = func({"x": x, "y": y})

cp = plt.contourf(X, Y, Z)
plt.scatter(logs.loc[:, ["params_x"]], logs.loc[:, ["params_y"]], color="red")
plt.xlim(xlim[0], xlim[1])
plt.ylim(ylim[0], ylim[1])
plt.colorbar(cp)
plt.xlabel("x")
plt.ylabel("y")
plt.title(title)


plot_trajectory([0, 1], [0, 1], objective_show, logs, "UD")
plt.show()
2 changes: 2 additions & 0 deletions package/samplers/uniform_design/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
scipy
git+https://github.com/ZebinYang/pyunidoe.git
186 changes: 186 additions & 0 deletions package/samplers/uniform_design/uniform_design.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
from typing import Any
from typing import Dict
from typing import Mapping
from typing import Optional
from typing import Sequence
import warnings

import numpy as np
from optuna.distributions import BaseDistribution
from optuna.distributions import CategoricalDistribution
from optuna.distributions import FloatDistribution
from optuna.distributions import IntDistribution
from optuna.logging import get_logger
from optuna.samplers import BaseSampler
from optuna.study import Study
from optuna.trial import FrozenTrial
from optuna.trial import TrialState
import pyunidoe as pydoe


_logger = get_logger(__name__)


class UniformDesignSampler(BaseSampler):
def __init__(
self,
search_space: Mapping[str, BaseDistribution],
discretization_level: int,
seed: Optional[int] = 1234,
) -> None:
for param_name, distribution in search_space.items():
assert isinstance(
distribution,
(
FloatDistribution,
IntDistribution,
CategoricalDistribution,
),
), "{} contains a value with the type of {}, which is not supported by UniformDesignSampler. Please make sure a value is int, float or categorical for persistent storage.".format(
param_name, type(distribution)
)

self._search_space = search_space
self._param_names = sorted(search_space.keys())
self._num_params = len(self._param_names)
self._discretization_level = discretization_level
self._seed = seed

self._base_ud = pydoe.gen_ud(
n=self._discretization_level,
s=self._num_params,
q=self._discretization_level,
crit="CD2",
maxiter=100,
random_state=self._seed,
)["final_design"]
ud_space = np.repeat(
np.linspace(
1 / (2 * self._discretization_level),
1 - 1 / (2 * self._discretization_level),
self._discretization_level,
).reshape([-1, 1]),
self._num_params,
axis=1,
)

self._ud_space = np.zeros((self._discretization_level, self._num_params))
for i in range(self._num_params):
self._ud_space[:, i] = ud_space[self._base_ud[:, i] - 1, i]

def before_trial(self, study: Study, trial: FrozenTrial) -> None:
if "grid_id" in trial.system_attrs or "fixed_params" in trial.system_attrs:
return

if 0 <= trial.number and trial.number < len(self._ud_space):
study._storage.set_trial_system_attr(
trial._trial_id, "search_space", self._search_space
)
study._storage.set_trial_system_attr(trial._trial_id, "grid_id", trial.number)
else:
target_grids = self._get_unvisited_grid_ids(study)
if len(target_grids) == 0:
_logger.warning(
"UniformDesignSampler is re-evaluating a configuration because the grid has been exhausted."
)
target_grids = list(range(len(self._ud_space)))

grid_id = int(np.random.choice(target_grids))
study._storage.set_trial_system_attr(trial._trial_id, "grid_id", grid_id)
study._storage.set_trial_system_attr(
trial._trial_id, "search_space", self._search_space
)

def infer_relative_search_space(
self, study: Study, trial: FrozenTrial
) -> Dict[str, BaseDistribution]:
return {}

def sample_relative(
self, study: Study, trial: FrozenTrial, search_space: Dict[str, BaseDistribution]
) -> Dict[str, Any]:
return {}

def sample_independent(
self,
study: Study,
trial: FrozenTrial,
param_name: str,
param_distribution: BaseDistribution,
) -> Any:
if "grid_id" not in trial.system_attrs:
message = "All parameters must be specified when using UniformDesignSampler with enqueue_trial."
raise ValueError(message)

if param_name not in self._search_space:
message = "The parameter name, {}, is not found in the given grid.".format(param_name)
raise ValueError(message)

grid_id = trial.system_attrs["grid_id"]
param_value = self._ud_space[grid_id][self._param_names.index(param_name)]
contains = param_distribution._contains(param_distribution.to_internal_repr(param_value))
if not contains:
warnings.warn(
f"The value {param_value} is out of range of the parameter {param_name}. "
f"The value will be used but the actual distribution is: {param_distribution}."
)

return param_value

def after_trial(
self,
study: Study,
trial: FrozenTrial,
state: TrialState,
values: Optional[Sequence[float]],
) -> None:
if trial.number >= len(self._ud_space) - 1:
new_stat = pydoe.gen_aud(
xp=self._base_ud,
n=self._base_ud.shape[0] + self._discretization_level,
s=self._num_params,
q=self._discretization_level,
crit="CD2",
maxiter=100,
random_state=self._seed,
)
new_base_ud = new_stat["final_design"]

new_ud_space = np.zeros((self._discretization_level, self._num_params))
ud_space = np.repeat(
np.linspace(
1 / (2 * self._discretization_level),
1 - 1 / (2 * self._discretization_level),
self._discretization_level,
).reshape([-1, 1]),
self._num_params,
axis=1,
)
for i in range(self._num_params):
new_ud_space[:, i] = ud_space[new_base_ud[-self._discretization_level :, i] - 1, i]

self._ud_space = np.vstack([self._ud_space, new_ud_space])
self._base_ud = new_base_ud

study._storage.set_trial_system_attr(trial._trial_id, "grid_id", trial.number)

def _get_unvisited_grid_ids(self, study: Study) -> list[int]:
visited_grids = []
running_grids = []

trials = study._storage.get_all_trials(study._study_id, deepcopy=False)

for t in trials:
if "grid_id" in t.system_attrs and self._same_search_space(
t.system_attrs["search_space"]
):
if t.state.is_finished():
visited_grids.append(t.system_attrs["grid_id"])
elif t.state == TrialState.RUNNING:
running_grids.append(t.system_attrs["grid_id"])

unvisited_grids = set(range(len(self._ud_space))) - set(visited_grids) - set(running_grids)
return list(unvisited_grids)

def _same_search_space(self, search_space: Dict[str, BaseDistribution]) -> bool:
return search_space == self._search_space

0 comments on commit f42ac05

Please sign in to comment.