-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
37 changed files
with
922 additions
and
83 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
''' | ||
Copyright 2024 Capgemini | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
''' | ||
import os | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from climateeconomics.glossarycore import GlossaryCore | ||
from scipy.interpolate import interp1d | ||
from scipy.optimize import minimize | ||
from sostrades_core.execution_engine.execution_engine import ExecutionEngine | ||
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import ( | ||
InstanciatedSeries, | ||
TwoAxesInstanciatedChart, | ||
) | ||
|
||
from energy_models.glossaryenergy import GlossaryEnergy | ||
|
||
""" | ||
This script is used to calibrate the gaseous bioenergy invest so that the energy production matches the IEA NZE scenario | ||
production values between 2020 and 2050 | ||
""" | ||
|
||
year_start = 2020 | ||
year_end = 2100 | ||
years_IEA = [2020, 2025, 2030, 2035, 2040, 2045, 2050, 2100] | ||
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict['AnaerobicDigestion'] | ||
years = np.arange(year_start, year_end + 1) | ||
|
||
# source: IEA report NZE2021Ch02 | ||
# energy(2100) = max worldwide potential = between 5000 to 15000 TWh if dedicated short rotation wood are considered (chatgpt). 5000 TWh is arbitrarily chosen | ||
models_path_abs = os.path.dirname(os.path.abspath(__file__)).split(os.sep + "models")[0] | ||
df_prod_iea = pd.read_csv( | ||
os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'data', 'IEA_NZE_EnergyMix.biogas.energy_production_detailed.csv')) | ||
new_row = pd.DataFrame({'years': [2100], "biogas AnaerobicDigestion (TWh)": [5000.]}) | ||
df_prod_iea = pd.concat([df_prod_iea, new_row], ignore_index=True) | ||
initial_production = df_prod_iea.loc[df_prod_iea[GlossaryEnergy.Years] == year_start]["biogas AnaerobicDigestion (TWh)"].values[0] | ||
|
||
# interpolate data between 2050 and 2100 | ||
years_IEA_interpolated = years #np.arange(years_IEA[0], years_IEA[-1] + 1, 5) | ||
f = interp1d(years_IEA, df_prod_iea["biogas AnaerobicDigestion (TWh)"].values, kind='linear') | ||
prod_IEA_interpolated = f(years) | ||
|
||
# increase discretization in order to smooth production between 2020 and 2030 | ||
years_optim = np.arange(years_IEA[0], years_IEA[-1] + 1, 5) #sorted(list(set(years_IEA + list(np.arange(year_start, max(year_start, 2030) + 1))))) | ||
|
||
invest_year_start = 3.432 #G$ | ||
|
||
name = 'Test' | ||
model_name = GlossaryEnergy.AnaerobicDigestion | ||
ns_dict = {'ns_public': name, | ||
'ns_energy': name, | ||
'ns_energy_study': f'{name}', | ||
'ns_biogas': f'{name}', | ||
'ns_resource': name} | ||
mod_path = 'energy_models.models.biogas.anaerobic_digestion.anaerobic_digestion_disc.AnaerobicDigestionDiscipline' | ||
ee = ExecutionEngine(name) | ||
ee.ns_manager.add_ns_def(ns_dict) | ||
builder = ee.factory.get_builder_from_module( | ||
model_name, mod_path) | ||
|
||
ee.factory.set_builders_to_coupling_builder(builder) | ||
|
||
ee.configure() | ||
ee.display_treeview_nodes() | ||
|
||
|
||
def run_model(x: list, year_end: int = year_end): | ||
init_prod = x[0] | ||
invest_before_year_start = x[1:1 + construction_delay] | ||
invest_years_optim = x[1 + construction_delay:] | ||
# interpolate on missing years | ||
f = interp1d(years_optim, invest_years_optim, kind='linear') | ||
invests = f(years) | ||
invest_df = pd.DataFrame({GlossaryEnergy.Years: years, | ||
GlossaryCore.InvestValue: list(invests)}) | ||
|
||
inputs_dict = { | ||
f'{name}.{GlossaryEnergy.YearStart}': year_start, | ||
f'{name}.{GlossaryEnergy.YearEnd}': year_end, | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df, | ||
f'{name}.{GlossaryEnergy.CO2TaxesValue}': pd.DataFrame( | ||
{GlossaryEnergy.Years: years, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years))}), | ||
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}), | ||
f'{name}.{GlossaryEnergy.StreamPricesValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}), | ||
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}), | ||
f'{name}.{GlossaryEnergy.TransportCostValue}': pd.DataFrame({GlossaryEnergy.Years: years, 'transport': np.zeros(len(years))}), | ||
#f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor, | ||
f'{name}.{model_name}.initial_production': init_prod, | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestmentBeforeYearStartValue}': pd.DataFrame({GlossaryEnergy.Years: np.arange(year_start - construction_delay, year_start), GlossaryEnergy.InvestValue: invest_before_year_start}), | ||
} | ||
|
||
# must load the dict twice, otherwise values are not taken into account | ||
ee.load_study_from_input_dict(inputs_dict) | ||
ee.load_study_from_input_dict(inputs_dict) | ||
|
||
ee.execute() | ||
|
||
prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) #PWh | ||
|
||
return prod_df[[GlossaryEnergy.Years, "biogas (TWh)"]], invest_df | ||
|
||
|
||
def fitting_renewable(x: list): | ||
prod_df, invest_df = run_model(x) | ||
prod_values_model = prod_df.loc[prod_df[GlossaryEnergy.Years].isin( | ||
years_IEA_interpolated), "biogas (TWh)"].values * 1000. # TWh | ||
return (((prod_values_model - prod_IEA_interpolated)) ** 2).mean() | ||
|
||
|
||
# Initial guess for the variables invest from year 2025 to 2100. | ||
x0 = np.concatenate((np.array([initial_production]), invest_year_start * np.ones(construction_delay), invest_year_start * np.ones(len(years_optim)))) | ||
bounds = [(initial_production * 0.87, initial_production * 0.87)] + [(invest_year_start/2.4, invest_year_start/2.4)] * construction_delay + (len(years_optim)) * [(invest_year_start/3., 3. * invest_year_start)] | ||
|
||
# Use minimize to find the minimum of the function | ||
result = minimize(fitting_renewable, x0, bounds=bounds, options={'disp': True, 'maxiter': 500, 'maxfun': 500, 'method': 'trust-constr', 'FACTR': 1.e-7}) | ||
|
||
prod_df, invest_df = run_model(result.x) | ||
# Print the result | ||
print("Function value at the optimum:", result.fun) | ||
print("initial production", result.x[0]) | ||
print("invest before year start", result.x[1:1+construction_delay]) | ||
print("invest at the optimum", result.x[1+construction_delay:]) | ||
|
||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'biogas production (TWh)', | ||
chart_name='Production : model vs historic') | ||
|
||
|
||
serie = InstanciatedSeries(list(prod_df[GlossaryEnergy.Years].values), list(prod_df["biogas (TWh)"].values * 1000.), 'model', 'lines+markers') | ||
new_chart.series.append(serie) | ||
|
||
serie = InstanciatedSeries(years_IEA, df_prod_iea["biogas AnaerobicDigestion (TWh)"].values, 'historic', 'scatter') | ||
new_chart.series.append(serie) | ||
serie = InstanciatedSeries(list(years_IEA_interpolated), list(prod_IEA_interpolated), 'historic_interpolated', 'lines+markers') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'biogas invest (G$)', | ||
chart_name='investments') | ||
serie = InstanciatedSeries(list(years_optim), list(result.x)[1+construction_delay:], 'invests_at_poles', 'lines+markers') | ||
new_chart.series.append(serie) | ||
serie = InstanciatedSeries(list(years), list(invest_df[GlossaryEnergy.InvestValue]), 'invests', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
disc = ee.dm.get_disciplines_with_name( | ||
f'{name}.{model_name}')[0] | ||
filters = disc.get_chart_filter_list() | ||
graph_list = disc.get_post_processing_list(filters) | ||
for graph in graph_list: | ||
graph.to_plotly().show() | ||
pass | ||
|
||
# update the invest_mix values with correct unit, ie divide by 1000 | ||
invest_mix_csv = os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'sos_processes', 'iam', 'witness', 'witness_optim_process', 'data', 'investment_mix.csv') | ||
df_invest_mix = pd.read_csv(invest_mix_csv) | ||
df_invest_mix['biogas.AnaerobicDigestion'] = invest_df[GlossaryCore.InvestValue] | ||
df_invest_mix.to_csv(invest_mix_csv, index=False, sep=',') | ||
# values to set in the invest_design_space_NZE.csv | ||
f = interp1d(years, df_invest_mix['biogas.AnaerobicDigestion'].values, kind='linear') | ||
invest_at_poles = f(np.linspace(year_start, year_end, 8)) | ||
print(f"invest at poles={invest_at_poles}") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
''' | ||
Copyright 2024 Capgemini | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
''' | ||
import os | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from climateeconomics.glossarycore import GlossaryCore | ||
from scipy.interpolate import interp1d | ||
from scipy.optimize import minimize | ||
from sostrades_core.execution_engine.execution_engine import ExecutionEngine | ||
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import ( | ||
InstanciatedSeries, | ||
TwoAxesInstanciatedChart, | ||
) | ||
|
||
from energy_models.glossaryenergy import GlossaryEnergy | ||
|
||
""" | ||
This script is used to calibrate the hydropower invest so that the electricity production matches the IEA NZE scenario | ||
production values between 2020 and 2050 | ||
""" | ||
|
||
year_start = 2020 | ||
year_end = 2100 | ||
years_IEA = [2020, 2025, 2030, 2035, 2040, 2045, 2050, 2100] | ||
years = np.arange(year_start, year_end + 1) | ||
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict['Hydropower'] | ||
|
||
# source: IEA report NZE2021Ch02 | ||
# energy(2100) = energy(2050) = physical limit of available hydroenergy if all basins, rivers, etc. are used | ||
df_prod_iea = pd.DataFrame({GlossaryEnergy.Years: years_IEA, | ||
'electricity (TWh)': [4444.3, 4999.9, 5833.2, 6666.5, 7499.8, 8055.3, 8610.9, 8610.9]}) | ||
initial_production = df_prod_iea.loc[df_prod_iea[GlossaryEnergy.Years] == year_start]['electricity (TWh)'].values[0] | ||
# interpolate data between 2050 and 2100 | ||
years_IEA_interpolated = years | ||
f = interp1d(years_IEA, df_prod_iea['electricity (TWh)'].values, kind='linear') | ||
prod_IEA_interpolated = f(years_IEA_interpolated) | ||
|
||
# increase discretization in order to smooth production between 2020 and 2030 | ||
years_optim = np.arange(years_IEA[0], years_IEA[-1] + 1, 5) #years_IEA_interpolated #sorted(list(set(years_IEA_interpolated + list(np.arange(year_start, max(year_start, 2030) + 1))))) | ||
invest_year_start = 18.957 #G$ | ||
|
||
name = 'Test' | ||
model_name = GlossaryEnergy.Hydropower | ||
ee = ExecutionEngine(name) | ||
ns_dict = {'ns_public': name, | ||
'ns_energy': name, | ||
'ns_energy_study': f'{name}', | ||
'ns_electricity': name, | ||
'ns_resource': name} | ||
ee.ns_manager.add_ns_def(ns_dict) | ||
|
||
mod_path = 'energy_models.models.electricity.hydropower.hydropower_disc.HydropowerDiscipline' | ||
builder = ee.factory.get_builder_from_module( | ||
model_name, mod_path) | ||
|
||
ee.factory.set_builders_to_coupling_builder(builder) | ||
|
||
ee.configure() | ||
ee.display_treeview_nodes() | ||
|
||
|
||
|
||
def run_model(x: list, year_end: int = year_end): | ||
init_prod = x[0] | ||
invest_before_year_start = x[1:1 + construction_delay] | ||
invest_years_optim = x[1 + construction_delay:] | ||
# interpolate on missing years | ||
f = interp1d(years_optim, invest_years_optim, kind='linear') | ||
invests = f(years) | ||
invest_df = pd.DataFrame({GlossaryEnergy.Years: years, | ||
GlossaryCore.InvestValue: list(invests)}) | ||
|
||
inputs_dict = { | ||
f'{name}.{GlossaryEnergy.YearStart}': year_start, | ||
f'{name}.{GlossaryEnergy.YearEnd}': year_end, | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df, | ||
f'{name}.{GlossaryEnergy.CO2TaxesValue}': pd.DataFrame( | ||
{GlossaryEnergy.Years: years, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years))}), | ||
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years}), | ||
f'{name}.{GlossaryEnergy.StreamPricesValue}': pd.DataFrame({GlossaryEnergy.Years: years}), | ||
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': pd.DataFrame({GlossaryEnergy.Years: years}), | ||
f'{name}.{GlossaryEnergy.TransportCostValue}': pd.DataFrame({GlossaryEnergy.Years: years, 'transport': np.zeros(len(years))}), | ||
#f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor, | ||
f'{name}.{model_name}.initial_production': init_prod, | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestmentBeforeYearStartValue}': pd.DataFrame( | ||
{GlossaryEnergy.Years: np.arange(year_start - construction_delay, year_start), | ||
GlossaryEnergy.InvestValue: invest_before_year_start}), | ||
} | ||
# bug: must load the study twice so that modifications are taked into accout | ||
ee.load_study_from_input_dict(inputs_dict) | ||
ee.load_study_from_input_dict(inputs_dict) | ||
|
||
ee.execute() | ||
|
||
prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) #PWh | ||
|
||
return prod_df[[GlossaryEnergy.Years, "electricity (TWh)"]], invest_df | ||
|
||
|
||
def fitting_renewable(x: list): | ||
prod_df, invest_df = run_model(x) | ||
prod_values_model = prod_df.loc[prod_df[GlossaryEnergy.Years].isin( | ||
years_IEA_interpolated), "electricity (TWh)"].values * 1000. # TWh | ||
return (((prod_values_model - prod_IEA_interpolated)) ** 2).mean() | ||
|
||
|
||
# Initial guess for the variables invest from year 2025 to 2100. | ||
# Initial guess for the variables invest from year 2025 to 2100. | ||
x0 = np.concatenate((np.array([initial_production]), invest_year_start * np.ones(construction_delay), invest_year_start * np.ones(len(years_optim)))) | ||
bounds = [(initial_production, initial_production)] + [(invest_year_start/1., invest_year_start/1.)] * construction_delay + (len(years_optim)) * [(invest_year_start/10., 10. * invest_year_start)] | ||
|
||
|
||
# Use minimize to find the minimum of the function | ||
result = minimize(fitting_renewable, x0, bounds=bounds, options={'disp': True, 'maxiter': 500, 'maxfun': 500, 'method': 'trust-constr', 'FACTR': 1.e-7}) | ||
|
||
prod_df, invest_df = run_model(result.x) | ||
|
||
# Print the result | ||
print("Function value at the optimum:", result.fun) | ||
print("initial production", result.x[0]) | ||
print("invest before year start", result.x[1:1+construction_delay]) | ||
print("invest at the optimum", result.x[1+construction_delay:]) | ||
|
||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'hydropower production (TWh)', | ||
chart_name='Production : model vs historic') | ||
|
||
|
||
serie = InstanciatedSeries(list(prod_df[GlossaryEnergy.Years].values), list(prod_df["electricity (TWh)"].values * 1000.), 'model', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
serie = InstanciatedSeries(years_IEA, df_prod_iea['electricity (TWh)'].values, 'historic', 'scatter') | ||
new_chart.series.append(serie) | ||
serie = InstanciatedSeries(list(years_IEA_interpolated), list(prod_IEA_interpolated), 'historic_interpolated', 'lines+markers') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'hydropower invest (G$)', | ||
chart_name='investments') | ||
serie = InstanciatedSeries(list(years_optim), list(result.x)[1+construction_delay:], 'invests_at_poles', 'lines+markers') | ||
new_chart.series.append(serie) | ||
serie = InstanciatedSeries(list(years), list(invest_df[GlossaryEnergy.InvestValue]), 'invests', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
disc = ee.dm.get_disciplines_with_name( | ||
f'{name}.{model_name}')[0] | ||
filters = disc.get_chart_filter_list() | ||
graph_list = disc.get_post_processing_list(filters) | ||
for graph in graph_list: | ||
graph.to_plotly().show() | ||
pass | ||
|
||
# export csv with correct unit, ie multiply by 1000 | ||
# update the invest_mix values with correct unit, ie multiply by 1000 | ||
models_path_abs = os.path.dirname(os.path.abspath(__file__)).split(os.sep + "models")[0] | ||
invest_mix_csv = os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'sos_processes', 'iam', 'witness', 'witness_optim_process', 'data', 'investment_mix.csv') | ||
df_invest_mix = pd.read_csv(invest_mix_csv) | ||
df_invest_mix['electricity.Hydropower'] = invest_df[GlossaryCore.InvestValue] | ||
df_invest_mix.to_csv(invest_mix_csv, index=False, sep=',') | ||
|
||
# values to set in the invest_design_space_NZE.csv | ||
f = interp1d(years, df_invest_mix['electricity.Hydropower'].values, kind='linear') | ||
invest_at_poles = f(np.linspace(year_start, year_end, 8)) | ||
print(f"invest at poles={invest_at_poles}") |
Oops, something went wrong.