Skip to content

Commit

Permalink
merge validation to main
Browse files Browse the repository at this point in the history
  • Loading branch information
b4pm-devops committed Nov 8, 2024
2 parents 17f0579 + a0176a1 commit f29deab
Show file tree
Hide file tree
Showing 37 changed files with 922 additions and 83 deletions.
178 changes: 178 additions & 0 deletions data_energy/fitting/gaseous_bioenergy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
'''
Copyright 2024 Capgemini
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import os

import numpy as np
import pandas as pd
from climateeconomics.glossarycore import GlossaryCore
from scipy.interpolate import interp1d
from scipy.optimize import minimize
from sostrades_core.execution_engine.execution_engine import ExecutionEngine
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import (
InstanciatedSeries,
TwoAxesInstanciatedChart,
)

from energy_models.glossaryenergy import GlossaryEnergy

"""
This script is used to calibrate the gaseous bioenergy invest so that the energy production matches the IEA NZE scenario
production values between 2020 and 2050
"""

year_start = 2020
year_end = 2100
years_IEA = [2020, 2025, 2030, 2035, 2040, 2045, 2050, 2100]
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict['AnaerobicDigestion']
years = np.arange(year_start, year_end + 1)

# source: IEA report NZE2021Ch02
# energy(2100) = max worldwide potential = between 5000 to 15000 TWh if dedicated short rotation wood are considered (chatgpt). 5000 TWh is arbitrarily chosen
models_path_abs = os.path.dirname(os.path.abspath(__file__)).split(os.sep + "models")[0]
df_prod_iea = pd.read_csv(
os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'data', 'IEA_NZE_EnergyMix.biogas.energy_production_detailed.csv'))
new_row = pd.DataFrame({'years': [2100], "biogas AnaerobicDigestion (TWh)": [5000.]})
df_prod_iea = pd.concat([df_prod_iea, new_row], ignore_index=True)
initial_production = df_prod_iea.loc[df_prod_iea[GlossaryEnergy.Years] == year_start]["biogas AnaerobicDigestion (TWh)"].values[0]

# interpolate data between 2050 and 2100
years_IEA_interpolated = years #np.arange(years_IEA[0], years_IEA[-1] + 1, 5)
f = interp1d(years_IEA, df_prod_iea["biogas AnaerobicDigestion (TWh)"].values, kind='linear')
prod_IEA_interpolated = f(years)

# increase discretization in order to smooth production between 2020 and 2030
years_optim = np.arange(years_IEA[0], years_IEA[-1] + 1, 5) #sorted(list(set(years_IEA + list(np.arange(year_start, max(year_start, 2030) + 1)))))

invest_year_start = 3.432 #G$

name = 'Test'
model_name = GlossaryEnergy.AnaerobicDigestion
ns_dict = {'ns_public': name,
'ns_energy': name,
'ns_energy_study': f'{name}',
'ns_biogas': f'{name}',
'ns_resource': name}
mod_path = 'energy_models.models.biogas.anaerobic_digestion.anaerobic_digestion_disc.AnaerobicDigestionDiscipline'
ee = ExecutionEngine(name)
ee.ns_manager.add_ns_def(ns_dict)
builder = ee.factory.get_builder_from_module(
model_name, mod_path)

ee.factory.set_builders_to_coupling_builder(builder)

ee.configure()
ee.display_treeview_nodes()


def run_model(x: list, year_end: int = year_end):
init_prod = x[0]
invest_before_year_start = x[1:1 + construction_delay]
invest_years_optim = x[1 + construction_delay:]
# interpolate on missing years
f = interp1d(years_optim, invest_years_optim, kind='linear')
invests = f(years)
invest_df = pd.DataFrame({GlossaryEnergy.Years: years,
GlossaryCore.InvestValue: list(invests)})

inputs_dict = {
f'{name}.{GlossaryEnergy.YearStart}': year_start,
f'{name}.{GlossaryEnergy.YearEnd}': year_end,
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df,
f'{name}.{GlossaryEnergy.CO2TaxesValue}': pd.DataFrame(
{GlossaryEnergy.Years: years, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years))}),
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}),
f'{name}.{GlossaryEnergy.StreamPricesValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}),
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': pd.DataFrame({GlossaryEnergy.Years: years, GlossaryEnergy.electricity: np.zeros_like(years), GlossaryEnergy.WetBiomassResource: np.zeros_like(years)}),
f'{name}.{GlossaryEnergy.TransportCostValue}': pd.DataFrame({GlossaryEnergy.Years: years, 'transport': np.zeros(len(years))}),
#f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor,
f'{name}.{model_name}.initial_production': init_prod,
f'{name}.{model_name}.{GlossaryEnergy.InvestmentBeforeYearStartValue}': pd.DataFrame({GlossaryEnergy.Years: np.arange(year_start - construction_delay, year_start), GlossaryEnergy.InvestValue: invest_before_year_start}),
}

# must load the dict twice, otherwise values are not taken into account
ee.load_study_from_input_dict(inputs_dict)
ee.load_study_from_input_dict(inputs_dict)

ee.execute()

prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) #PWh

return prod_df[[GlossaryEnergy.Years, "biogas (TWh)"]], invest_df


def fitting_renewable(x: list):
prod_df, invest_df = run_model(x)
prod_values_model = prod_df.loc[prod_df[GlossaryEnergy.Years].isin(
years_IEA_interpolated), "biogas (TWh)"].values * 1000. # TWh
return (((prod_values_model - prod_IEA_interpolated)) ** 2).mean()


# Initial guess for the variables invest from year 2025 to 2100.
x0 = np.concatenate((np.array([initial_production]), invest_year_start * np.ones(construction_delay), invest_year_start * np.ones(len(years_optim))))
bounds = [(initial_production * 0.87, initial_production * 0.87)] + [(invest_year_start/2.4, invest_year_start/2.4)] * construction_delay + (len(years_optim)) * [(invest_year_start/3., 3. * invest_year_start)]

# Use minimize to find the minimum of the function
result = minimize(fitting_renewable, x0, bounds=bounds, options={'disp': True, 'maxiter': 500, 'maxfun': 500, 'method': 'trust-constr', 'FACTR': 1.e-7})

prod_df, invest_df = run_model(result.x)
# Print the result
print("Function value at the optimum:", result.fun)
print("initial production", result.x[0])
print("invest before year start", result.x[1:1+construction_delay])
print("invest at the optimum", result.x[1+construction_delay:])


new_chart = TwoAxesInstanciatedChart('years', 'biogas production (TWh)',
chart_name='Production : model vs historic')


serie = InstanciatedSeries(list(prod_df[GlossaryEnergy.Years].values), list(prod_df["biogas (TWh)"].values * 1000.), 'model', 'lines+markers')
new_chart.series.append(serie)

serie = InstanciatedSeries(years_IEA, df_prod_iea["biogas AnaerobicDigestion (TWh)"].values, 'historic', 'scatter')
new_chart.series.append(serie)
serie = InstanciatedSeries(list(years_IEA_interpolated), list(prod_IEA_interpolated), 'historic_interpolated', 'lines+markers')
new_chart.series.append(serie)

new_chart.to_plotly().show()

new_chart = TwoAxesInstanciatedChart('years', 'biogas invest (G$)',
chart_name='investments')
serie = InstanciatedSeries(list(years_optim), list(result.x)[1+construction_delay:], 'invests_at_poles', 'lines+markers')
new_chart.series.append(serie)
serie = InstanciatedSeries(list(years), list(invest_df[GlossaryEnergy.InvestValue]), 'invests', 'lines')
new_chart.series.append(serie)

new_chart.to_plotly().show()

disc = ee.dm.get_disciplines_with_name(
f'{name}.{model_name}')[0]
filters = disc.get_chart_filter_list()
graph_list = disc.get_post_processing_list(filters)
for graph in graph_list:
graph.to_plotly().show()
pass

# update the invest_mix values with correct unit, ie divide by 1000
invest_mix_csv = os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'sos_processes', 'iam', 'witness', 'witness_optim_process', 'data', 'investment_mix.csv')
df_invest_mix = pd.read_csv(invest_mix_csv)
df_invest_mix['biogas.AnaerobicDigestion'] = invest_df[GlossaryCore.InvestValue]
df_invest_mix.to_csv(invest_mix_csv, index=False, sep=',')
# values to set in the invest_design_space_NZE.csv
f = interp1d(years, df_invest_mix['biogas.AnaerobicDigestion'].values, kind='linear')
invest_at_poles = f(np.linspace(year_start, year_end, 8))
print(f"invest at poles={invest_at_poles}")

181 changes: 181 additions & 0 deletions data_energy/fitting/hydropower.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
'''
Copyright 2024 Capgemini
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import os

import numpy as np
import pandas as pd
from climateeconomics.glossarycore import GlossaryCore
from scipy.interpolate import interp1d
from scipy.optimize import minimize
from sostrades_core.execution_engine.execution_engine import ExecutionEngine
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import (
InstanciatedSeries,
TwoAxesInstanciatedChart,
)

from energy_models.glossaryenergy import GlossaryEnergy

"""
This script is used to calibrate the hydropower invest so that the electricity production matches the IEA NZE scenario
production values between 2020 and 2050
"""

year_start = 2020
year_end = 2100
years_IEA = [2020, 2025, 2030, 2035, 2040, 2045, 2050, 2100]
years = np.arange(year_start, year_end + 1)
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict['Hydropower']

# source: IEA report NZE2021Ch02
# energy(2100) = energy(2050) = physical limit of available hydroenergy if all basins, rivers, etc. are used
df_prod_iea = pd.DataFrame({GlossaryEnergy.Years: years_IEA,
'electricity (TWh)': [4444.3, 4999.9, 5833.2, 6666.5, 7499.8, 8055.3, 8610.9, 8610.9]})
initial_production = df_prod_iea.loc[df_prod_iea[GlossaryEnergy.Years] == year_start]['electricity (TWh)'].values[0]
# interpolate data between 2050 and 2100
years_IEA_interpolated = years
f = interp1d(years_IEA, df_prod_iea['electricity (TWh)'].values, kind='linear')
prod_IEA_interpolated = f(years_IEA_interpolated)

# increase discretization in order to smooth production between 2020 and 2030
years_optim = np.arange(years_IEA[0], years_IEA[-1] + 1, 5) #years_IEA_interpolated #sorted(list(set(years_IEA_interpolated + list(np.arange(year_start, max(year_start, 2030) + 1)))))
invest_year_start = 18.957 #G$

name = 'Test'
model_name = GlossaryEnergy.Hydropower
ee = ExecutionEngine(name)
ns_dict = {'ns_public': name,
'ns_energy': name,
'ns_energy_study': f'{name}',
'ns_electricity': name,
'ns_resource': name}
ee.ns_manager.add_ns_def(ns_dict)

mod_path = 'energy_models.models.electricity.hydropower.hydropower_disc.HydropowerDiscipline'
builder = ee.factory.get_builder_from_module(
model_name, mod_path)

ee.factory.set_builders_to_coupling_builder(builder)

ee.configure()
ee.display_treeview_nodes()



def run_model(x: list, year_end: int = year_end):
init_prod = x[0]
invest_before_year_start = x[1:1 + construction_delay]
invest_years_optim = x[1 + construction_delay:]
# interpolate on missing years
f = interp1d(years_optim, invest_years_optim, kind='linear')
invests = f(years)
invest_df = pd.DataFrame({GlossaryEnergy.Years: years,
GlossaryCore.InvestValue: list(invests)})

inputs_dict = {
f'{name}.{GlossaryEnergy.YearStart}': year_start,
f'{name}.{GlossaryEnergy.YearEnd}': year_end,
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df,
f'{name}.{GlossaryEnergy.CO2TaxesValue}': pd.DataFrame(
{GlossaryEnergy.Years: years, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years))}),
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years}),
f'{name}.{GlossaryEnergy.StreamPricesValue}': pd.DataFrame({GlossaryEnergy.Years: years}),
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': pd.DataFrame({GlossaryEnergy.Years: years}),
f'{name}.{GlossaryEnergy.TransportCostValue}': pd.DataFrame({GlossaryEnergy.Years: years, 'transport': np.zeros(len(years))}),
#f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor,
f'{name}.{model_name}.initial_production': init_prod,
f'{name}.{model_name}.{GlossaryEnergy.InvestmentBeforeYearStartValue}': pd.DataFrame(
{GlossaryEnergy.Years: np.arange(year_start - construction_delay, year_start),
GlossaryEnergy.InvestValue: invest_before_year_start}),
}
# bug: must load the study twice so that modifications are taked into accout
ee.load_study_from_input_dict(inputs_dict)
ee.load_study_from_input_dict(inputs_dict)

ee.execute()

prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) #PWh

return prod_df[[GlossaryEnergy.Years, "electricity (TWh)"]], invest_df


def fitting_renewable(x: list):
prod_df, invest_df = run_model(x)
prod_values_model = prod_df.loc[prod_df[GlossaryEnergy.Years].isin(
years_IEA_interpolated), "electricity (TWh)"].values * 1000. # TWh
return (((prod_values_model - prod_IEA_interpolated)) ** 2).mean()


# Initial guess for the variables invest from year 2025 to 2100.
# Initial guess for the variables invest from year 2025 to 2100.
x0 = np.concatenate((np.array([initial_production]), invest_year_start * np.ones(construction_delay), invest_year_start * np.ones(len(years_optim))))
bounds = [(initial_production, initial_production)] + [(invest_year_start/1., invest_year_start/1.)] * construction_delay + (len(years_optim)) * [(invest_year_start/10., 10. * invest_year_start)]


# Use minimize to find the minimum of the function
result = minimize(fitting_renewable, x0, bounds=bounds, options={'disp': True, 'maxiter': 500, 'maxfun': 500, 'method': 'trust-constr', 'FACTR': 1.e-7})

prod_df, invest_df = run_model(result.x)

# Print the result
print("Function value at the optimum:", result.fun)
print("initial production", result.x[0])
print("invest before year start", result.x[1:1+construction_delay])
print("invest at the optimum", result.x[1+construction_delay:])


new_chart = TwoAxesInstanciatedChart('years', 'hydropower production (TWh)',
chart_name='Production : model vs historic')


serie = InstanciatedSeries(list(prod_df[GlossaryEnergy.Years].values), list(prod_df["electricity (TWh)"].values * 1000.), 'model', 'lines')
new_chart.series.append(serie)

serie = InstanciatedSeries(years_IEA, df_prod_iea['electricity (TWh)'].values, 'historic', 'scatter')
new_chart.series.append(serie)
serie = InstanciatedSeries(list(years_IEA_interpolated), list(prod_IEA_interpolated), 'historic_interpolated', 'lines+markers')
new_chart.series.append(serie)

new_chart.to_plotly().show()

new_chart = TwoAxesInstanciatedChart('years', 'hydropower invest (G$)',
chart_name='investments')
serie = InstanciatedSeries(list(years_optim), list(result.x)[1+construction_delay:], 'invests_at_poles', 'lines+markers')
new_chart.series.append(serie)
serie = InstanciatedSeries(list(years), list(invest_df[GlossaryEnergy.InvestValue]), 'invests', 'lines')
new_chart.series.append(serie)

new_chart.to_plotly().show()

disc = ee.dm.get_disciplines_with_name(
f'{name}.{model_name}')[0]
filters = disc.get_chart_filter_list()
graph_list = disc.get_post_processing_list(filters)
for graph in graph_list:
graph.to_plotly().show()
pass

# export csv with correct unit, ie multiply by 1000
# update the invest_mix values with correct unit, ie multiply by 1000
models_path_abs = os.path.dirname(os.path.abspath(__file__)).split(os.sep + "models")[0]
invest_mix_csv = os.path.join(models_path_abs, 'models', 'witness-core', 'climateeconomics', 'sos_processes', 'iam', 'witness', 'witness_optim_process', 'data', 'investment_mix.csv')
df_invest_mix = pd.read_csv(invest_mix_csv)
df_invest_mix['electricity.Hydropower'] = invest_df[GlossaryCore.InvestValue]
df_invest_mix.to_csv(invest_mix_csv, index=False, sep=',')

# values to set in the invest_design_space_NZE.csv
f = interp1d(years, df_invest_mix['electricity.Hydropower'].values, kind='linear')
invest_at_poles = f(np.linspace(year_start, year_end, 8))
print(f"invest at poles={invest_at_poles}")
Loading

0 comments on commit f29deab

Please sign in to comment.