Skip to content
forked from Apokli/ACO

Applied Convex Optimizaiton Project 2 Grp 3

Notifications You must be signed in to change notification settings

pandadada123/ACO

 
 

Repository files navigation

ACO

Applied Convex Optimizaiton Project 2 Grp 3

Codes for Subgradient Descent Method for SVM, including Pegasos and mini-batch Pegasos

  • Objective function of Subgradient Descent Method

$$ f(\mathbf{w}, b)=\frac{\lambda}{2}|\mathbf{w}|^2+\frac{1}{n}\left[\sum_{i=1}^n \max \left(0,1-y_i\left(\mathbf{w}^T \mathbf{x}_{\mathbf{i}}+b\right)\right)\right] \quad i=1,2, \ldots, n $$

  • Pegasos

$$ f(\mathbf{w})=\frac{\lambda}{2}|\mathbf{w}|^2+\max \left(0,1-y_{i t}\left(\mathbf{w}^T \mathbf{x}_{i t}\right)\right) $$

  • mini-batch Pegasos

$$ f(\mathbf{w}, k)=\frac{\lambda}{2}|\mathbf{w}|^2+\frac{1}{k}\left[\sum_{i=1}^k \max \left(0,1-y_i\left(\mathbf{w}^T \mathbf{x}_{\mathbf{i}}\right)\right)\right] \quad i=1,2, \ldots, k $$

Reference

[1] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning - from theory to algorithms, Cambridge University Press.

[2] Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver for svm, Mathematical programming, 127 (1), 3–30.

About

Applied Convex Optimizaiton Project 2 Grp 3

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%