Curent version was tested with cuda 11.8. See `environment.yml` for all required python packages. Currently, installation only works on Linux machines.
# Pangu
from weatherlearn.models import Pangu
import torch
if __name__ == '__main__':
B = 1 # batch_size
surface = torch.randn(B, 4, 721, 1440) # B, C, Lat, Lon
surface_mask = torch.randn(3, 721, 1440) # topography mask, land-sea mask, soil-type mask
upper_air = torch.randn(B, 5, 13, 721, 1440) # B, C, Pl, Lat, Lon
pangu_weather = Pangu()
output_surface, output_upper_air = pangu_weather(surface, surface_mask, upper_air)
# Pangu_lite
from weatherlearn.models import Pangu_lite
import torch
if __name__ == '__main__':
B = 1 # batch_size
surface = torch.randn(B, 4, 721, 1440) # B, C, Lat, Lon
surface_mask = torch.randn(3, 721, 1440) # topography mask, land-sea mask, soil-type mask
upper_air = torch.randn(B, 5, 13, 721, 1440) # B, C, Pl, Lat, Lon
pangu_lite = Pangu_lite()
output_surface, output_upper_air = pangu_lite(surface, surface_mask, upper_air)
@article{bi2023accurate,
title={Accurate medium-range global weather forecasting with 3D neural networks},
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
journal={Nature},
volume={619},
number={7970},
pages={533--538},
year={2023},
publisher={Nature Publishing Group}
}
@article{bi2022pangu,
title={Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast},
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
journal={arXiv preprint arXiv:2211.02556},
year={2022}
}
from weatherlearn.models import Fuxi
import torch
if __name__ == '__main__':
B = 1 # batch_size
in_chans = out_chans = 70 # number of input channels or output channels
input = torch.randn(B, in_chans, 2, 721, 1440) # B C T Lat Lon
fuxi = Fuxi()
# patch_size : Default: (2, 4, 4)
# embed_dim : Default: 1536
# num_groups : Default: 32
# num_heads : Default: 8
# window_size : Default: 7
output = fuxi(input) # B C Lat Lon
FuXi: A cascade machine learning forecasting system for 15-day global weather forecast
Published on npj Climate and Atmospheric Science: FuXi: a cascade machine learning forecasting system for 15-day global weather forecast
by Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, Hao Li
- FengWu Model (https://arxiv.org/pdf/2304.02948v1.pdf)
- FuXi Model (https://arxiv.org/pdf/2306.12873v3.pdf)
- Set a separate window_size for longitude and latitude in the Fuxi model.
- Add more unittest.
- Infer the Pangu model using the pre-trained weights provided by the official Pangu repository.