forked from dvschultz/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/dvschultz/stylegan2-ada int…
…o main
- Loading branch information
Showing
8 changed files
with
287 additions
and
37 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import numpy as np | ||
import scipy.ndimage | ||
import os | ||
import PIL.Image | ||
|
||
|
||
def image_align(src_file, dst_file, face_landmarks, output_size=1024, transform_size=4096, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False): | ||
# Align function from FFHQ dataset pre-processing step | ||
# https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py | ||
|
||
lm = np.array(face_landmarks) | ||
lm_chin = lm[0 : 17] # left-right | ||
lm_eyebrow_left = lm[17 : 22] # left-right | ||
lm_eyebrow_right = lm[22 : 27] # left-right | ||
lm_nose = lm[27 : 31] # top-down | ||
lm_nostrils = lm[31 : 36] # top-down | ||
lm_eye_left = lm[36 : 42] # left-clockwise | ||
lm_eye_right = lm[42 : 48] # left-clockwise | ||
lm_mouth_outer = lm[48 : 60] # left-clockwise | ||
lm_mouth_inner = lm[60 : 68] # left-clockwise | ||
|
||
# Calculate auxiliary vectors. | ||
eye_left = np.mean(lm_eye_left, axis=0) | ||
eye_right = np.mean(lm_eye_right, axis=0) | ||
eye_avg = (eye_left + eye_right) * 0.5 | ||
eye_to_eye = eye_right - eye_left | ||
mouth_left = lm_mouth_outer[0] | ||
mouth_right = lm_mouth_outer[6] | ||
mouth_avg = (mouth_left + mouth_right) * 0.5 | ||
eye_to_mouth = mouth_avg - eye_avg | ||
|
||
# Choose oriented crop rectangle. | ||
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | ||
x /= np.hypot(*x) | ||
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | ||
x *= x_scale | ||
y = np.flipud(x) * [-y_scale, y_scale] | ||
c = eye_avg + eye_to_mouth * em_scale | ||
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | ||
qsize = np.hypot(*x) * 2 | ||
|
||
# Load in-the-wild image. | ||
if not os.path.isfile(src_file): | ||
print('\nCannot find source image. Please run "--wilds" before "--align".') | ||
return | ||
img = PIL.Image.open(src_file).convert('RGBA').convert('RGB') | ||
|
||
# Shrink. | ||
shrink = int(np.floor(qsize / output_size * 0.5)) | ||
if shrink > 1: | ||
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | ||
img = img.resize(rsize, PIL.Image.ANTIALIAS) | ||
quad /= shrink | ||
qsize /= shrink | ||
|
||
# Crop. | ||
border = max(int(np.rint(qsize * 0.1)), 3) | ||
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | ||
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) | ||
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | ||
img = img.crop(crop) | ||
quad -= crop[0:2] | ||
|
||
# Pad. | ||
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | ||
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) | ||
if enable_padding and max(pad) > border - 4: | ||
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | ||
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | ||
h, w, _ = img.shape | ||
y, x, _ = np.ogrid[:h, :w, :1] | ||
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) | ||
blur = qsize * 0.02 | ||
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | ||
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) | ||
img = np.uint8(np.clip(np.rint(img), 0, 255)) | ||
if alpha: | ||
mask = 1-np.clip(3.0 * mask, 0.0, 1.0) | ||
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255)) | ||
img = np.concatenate((img, mask), axis=2) | ||
img = PIL.Image.fromarray(img, 'RGBA') | ||
else: | ||
img = PIL.Image.fromarray(img, 'RGB') | ||
quad += pad[:2] | ||
|
||
# Transform. | ||
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | ||
if output_size < transform_size: | ||
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | ||
|
||
# Save aligned image. | ||
img.save(dst_file, 'PNG') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import dlib | ||
|
||
|
||
class LandmarksDetector: | ||
def __init__(self, predictor_model_path): | ||
""" | ||
:param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file | ||
""" | ||
self.detector = dlib.get_frontal_face_detector() # cnn_face_detection_model_v1 also can be used | ||
self.shape_predictor = dlib.shape_predictor(predictor_model_path) | ||
|
||
def get_landmarks(self, image): | ||
img = dlib.load_rgb_image(image) | ||
dets = self.detector(img, 1) | ||
|
||
for detection in dets: | ||
try: | ||
face_landmarks = [(item.x, item.y) for item in self.shape_predictor(img, detection).parts()] | ||
yield face_landmarks | ||
except: | ||
print("Exception in get_landmarks()!") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import os | ||
import sys | ||
import bz2 | ||
from keras.utils import get_file | ||
from ffhq_dataset.face_alignment import image_align | ||
from ffhq_dataset.landmarks_detector import LandmarksDetector | ||
|
||
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' | ||
|
||
|
||
def unpack_bz2(src_path): | ||
data = bz2.BZ2File(src_path).read() | ||
dst_path = src_path[:-4] | ||
with open(dst_path, 'wb') as fp: | ||
fp.write(data) | ||
return dst_path | ||
|
||
|
||
if __name__ == "__main__": | ||
""" | ||
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step | ||
python align_images.py /raw_images /aligned_images | ||
""" | ||
|
||
landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2', | ||
LANDMARKS_MODEL_URL, cache_subdir='temp')) | ||
RAW_IMAGES_DIR = sys.argv[1] | ||
ALIGNED_IMAGES_DIR = sys.argv[2] | ||
|
||
landmarks_detector = LandmarksDetector(landmarks_model_path) | ||
for img_name in [x for x in os.listdir(RAW_IMAGES_DIR) if x[0] not in '._']: | ||
raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name) | ||
for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1): | ||
face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i) | ||
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name) | ||
os.makedirs(ALIGNED_IMAGES_DIR, exist_ok=True) | ||
image_align(raw_img_path, aligned_face_path, face_landmarks) |
Oops, something went wrong.