This is a fork of the original at https://github.com/tedyapo/maxima-circuits by tedyapo. My additions are in the files circuitsLH.mac and circuits.wxm.
Maxima functions for circuit calculations
See also the accompanying Hackaday article.
Load the functions using
load("circuits.mac")$
You may also place this line in your startup script (typically ~/.maxima/maxima-init.mac or ~/.maxima/wxmaxima-init.mac)
Calculate reciprical of sum of reciprocals of supplied arguments, aka the harmonic sum. This calculates equivalents for parallel resistor or inductor values, or for series capacitors.
Examples:
(%i2) par(100, 75);
(%o2) 42.85714285714285
(%i3) par(r1, r2, r3);
1
(%o3) ------------
1 1 1
-- + -- + --
r3 r2 r1
Calculate output of a voltage divider as a ratio of the input voltage.
Examples:
(%i4) 5*vdiv(75, 150);
(%o4) 3.333333333333333
(%i5) vdiv(r1, r2) = 3.3/5;
r2
(%o5) ------- = 0.6599999999999999
r2 + r1
Find preferred values from EIA standard "E series." The following values for E are allowed:
E3 : 50% tolerance
E6 : 20% tolerance
E12 : 10% tolerance
E24 : 5% tolerance
E48 : 2% tolerance
E96 : 1% tolerance
E192 : <1% tolerance
E48_24 : combined vales from E48 and E24 series
E96_24 : combined vales from E96 and E24 series
E192_24 : combined vales from E192 and E24 series
Examples:
(%i6) pref(50, E3);
(%o6) 47.0
(%i7) pref(50, E24);
(%o7) 51.0
(%i8) pref(50, E96);
(%o8) 49.9
Convert voltage ratio to dB
Example:
(%i2) VrtodB(sqrt(2));
(%o2) 3.010299956639812
Convert dB to voltage ratio
Example:
(%i6) dBtoVr(6);
(%o6) 1.995262314968879
Let's design a 6dB pi attenuator for a 50-ohm system. The circuit looks like this:
First, we write an expression for the output impedance:
(%i14) Zout: par(r2, r1+par(r2, 50));
1
(%o14) -------------------
1 1
-- + --------------
r2 1
--------- + r1
1
-- + 0.02
r2
next, an expression for the input to output voltage ratio (Vout/Vin):
(%i15) Vout: vdiv(r1, par(r2, 50));
1
(%o15) ----------------------------
1 1
(--------- + r1) (-- + 0.02)
1 r2
-- + 0.02
r2
Using these expressions, we create a system of two equations and solve for the resistor values:
(%i3) soln: solve([Zout = 50, Vout = dBtoVr(-6)], [r1, r2]);
(%o3) [[r1 = 37.35187703354015, r2 = 150.4760237537246], [r1 = 0, r2 = 0]]
The first solution is the one we're interested in. Now, we choose resistors from the E12 (10%) series:
(%i4) vals: pref(first(soln), E12);
(%o4) [r1 = 39.0, r2 = 150.0]
and evaluate the result:
(%i5) ev([Zout, VrtodB(Vout)], vals);
(%o5) [50.66225165562914, - 6.192603348517975]
Let's see how much better 1% values are:
(%i6) vals: pref(first(soln), E96);
(%o6) [r1 = 37.4, r2 = 150.0]
How does this look?
(%i7) ev([Zout, VrtodB(Vout)], vals);
(%o7) [49.95553579368609, - 6.009010999434952]
Close enough.