Schema is used to define the names, data types, and other information for the columns of a Pinot table.
The Pinot schema is composed of:
Field | Release Version | Default | Description |
---|---|---|---|
schemaName | - | required | Name of the schema. This must be the same as the table name without the REALTIME or OFFLINE suffix. Therefore, the offline and the real-time table of a hybrid table should use the same schema. |
enableColumnBasedNullHandling | 1.1.0 | false | When set to true , enables column-based null handling. The default value false means to use table-based null handling. See Null value support for more information about this. |
dimensionFieldSpec | - | [] | A dimensionFieldSpec is defined for each dimension column. For more details, see DimensionFieldSpec. |
metricFieldSpec | - | [] | A metricFieldSpec is defined for each metric column. For more details, see MetricFieldSpec. |
dateTimeFieldSpec | - | [] | A dateTimeFieldSpec is defined for the time columns. There can be multiple time columns. For more details, see DateTimeFieldSpec. |
complexFieldSpec | - | [] | A complexFieldSpec is defined for complex data types Map. For more details, see #complexfieldspec |
{% code title="flights-schema.json" %}
{
"schemaName": "flights",
"enableColumnBasedNullHandling": false,
"dimensionFieldSpecs": [
{
"name": "flightNumber",
"dataType": "LONG"
},
{
"name": "tags",
"dataType": "STRING",
"singleValueField": false,
"defaultNullValue": "null"
}
],
"metricFieldSpecs": [
{
"name": "price",
"dataType": "DOUBLE",
"defaultNullValue": 0
}
],
"dateTimeFieldSpecs": [
{
"name": "millisSinceEpoch",
"dataType": "LONG",
"format": "EPOCH",
"granularity": "15:MINUTES"
},
{
"name": "hoursSinceEpoch",
"dataType": "INT",
"format": "EPOCH|HOURS",
"granularity": "1:HOURS"
},
{
"name": "dateString",
"dataType": "STRING",
"format": "SIMPLE_DATE_FORMAT|yyyy-MM-dd",
"granularity": "1:DAYS"
}
]
}
{% endcode %}
The above json configuration is the example of Pinot schema derived from the flight data. As seen in the example, the schema is composed of 4 parts: schemaName
, dimensionFieldSpec
, metricFieldSpec
, and dateTimeFieldSpec
. Below is a detailed description of each type of field spec.
flights-schema-map.json
{
"schemaName": "flights",
"enableColumnBasedNullHandling": false,
"dimensionFieldSpecs": [
{
"name": "flightNumber",
"dataType": "LONG"
}
],
"metricFieldSpecs": [
{
"name": "price",
"dataType": "DOUBLE",
"defaultNullValue": 0
}
],
"dateTimeFieldSpecs": [
{
"name": "millisSinceEpoch",
"dataType": "LONG",
"format": "EPOCH",
"granularity": "15:MINUTES"
},
{
"name": "hoursSinceEpoch",
"dataType": "INT",
"format": "EPOCH|HOURS",
"granularity": "1:HOURS"
},
{
"name": "dateString",
"dataType": "STRING",
"format": "SIMPLE_DATE_FORMAT|yyyy-MM-dd",
"granularity": "1:DAYS"
}
],
"complexFieldSpecs": [
{
"name": "tags",
"dataType": "MAP",
"fieldType": "COMPLEX",
"notNull": false,
"childFieldSpecs": {
"key": {
"name": "key",
"dataType": "STRING",
"fieldType": "DIMENSION",
"notNull": false
},
"value": {
"name": "value",
"dataType": "STRING",
"fieldType": "DIMENSION",
"notNull": false
}
}
}
]
}
The above JSON configuration is an example of a Pinot schema derived from flight data. As seen in the example, the schema is composed of 5 parts: schemaName, dimensionFieldSpecs, metricFieldSpecs, dateTimeFieldSpecs, and complexFieldSpecs.
Data types determine the operations that can be performed on a column. Pinot supports the following data types:
Data Type | Default Dimension Value | Default Metric Value |
---|---|---|
INT | Integer.MIN_VALUE | 0 |
LONG | Long.MIN_VALUE | 0 |
FLOAT | Float.NEGATIVE_INFINITY | 0.0 |
DOUBLE | Double.NEGATIVE_INFINITY | 0.0 |
BIG_DECIMAL | Not supported | 0.0 |
BOOLEAN | 0 (false) | N/A |
TIMESTAMP | 0 (1970-01-01 00:00:00 UTC) | N/A |
STRING | "null" | N/A |
JSON | "null" | N/A |
BYTES | byte array of length 0 | byte array of length 0 |
{% hint style="warning" %} The lowest granularity TIMESTAMP type supports is milliseconds epoch, nanoseconds is not supported. {% endhint %}
Read the following sections for details on how data types are used in various parts of a schema.
A dimensionFieldSpec is defined for each dimension column. Here's a list of the fields in the dimensionFieldSpec:
Property | Description |
---|---|
name | Name of the dimension column. |
dataType | Data type of the dimension column. Can be INT, LONG, FLOAT, DOUBLE, BOOLEAN, TIMESTAMP, STRING, BYTES,JSON. |
defaultNullValue | Represents null values in the data, since Pinot doesn't support storing null column values natively (as part of its on-disk storage format). If not specified, an internal default null value is used as listed here. |
singleValueField | Boolean indicating if this is a single-valued or a multi-valued column. Multi-valued column is modeled as a list, where the order of the values are preserved and duplicate values are allowed. Individual rows don’t necessarily have the same number of values. Typical use case for this would be a column such as skillSet for a person (one row in the table) that can have multiple values such as Real Estate, Mortgages . The default null value for a multi-valued column is a single defaultNullValue , e.g. [Integer.MIN_VALUE] . |
Data Type | Internal Default Null Value |
---|---|
INT | Integer.MIN_VALUE |
LONG | Long.MIN_VALUE |
FLOAT | Float.NEGATIVE_INFINITY |
DOUBLE | Double.NEGATIVE_INFINITY |
BOOLEAN | 0 (false ) |
TIMESTAMP | 0 (1970-01-01 00:00:00 UTC ) |
STRING | "null" |
BYTES | byte array of length 0 |
JSON | "null" |
A metricFieldSpec is defined for each metric column. Here's a list of fields in the metricFieldSpec
Property | Description |
---|---|
name | Name of the metric column |
dataType | Data type of the column. Can be INT, LONG, FLOAT, DOUBLE, BIG_DECIMAL, BYTES (for specialized representations such as HLL, TDigest, etc, where the column stores byte serialized version of the value) |
defaultNullValue | Represents null values in the data. If not specified, an internal default null value is used, as listed here. |
Data Type | Internal Default Null Value |
---|---|
INT | 0 |
LONG | 0 |
FLOAT | 0.0 |
DOUBLE | 0.0 |
BIG_DECIMAL | 0.0 |
BYTES | byte array of length 0 |
A complexFieldSpec is defined for complex data types Map. The following fields can be configured in the complex field spec -
Property | Description |
---|---|
Name | Name of the complex column |
dataType | Data type of the complex column.Currently supports MAP |
fieldType | Should be set to COMPLEX |
notNull | Boolean indicating if this column can contain null values |
childFieldSpecs | Specification for the key and value fields of the Map. See the details below |
The `childFieldSpecs` property defines the structure of the key and value fields within the Map. It contains two sub-specifications: `key` and `value`.
The key of a Map in Pinot is always a String. The key childFieldSpec has the following properties:
Property | Description |
---|---|
Name | Should be set to key. |
dataType | Should be set to String |
fieldType | Should be set to Dimension |
notNull | Boolean indicating if the key can be null (typically set to false) |
The value childFieldSpec defines the type of values stored in the Map. It has the following properties:
Property | Description |
---|---|
Name | Should be set to "value" |
dataType | Data type of the value ("STRING", "INT", "LONG", "FLOAT", "DOUBLE") |
fieldType | Should be set to "DIMENSION" for non-numeric types |
notNull | Boolean indicating if the value can be null |
A dateTimeFieldSpec is used to define time columns of the table. The following fields can be configured in the date time field spec -
Property | Description |
---|---|
name | Name of the date time column |
dataType | Data type of the date time column. Can be |
format | The format in which the datetime is present in the column. Refer to Date time formats for supported formats. |
granularity | The granularity in which the column is bucketed. The syntax of granularity is |
defaultNullValue | Represents null values in the data. If not specified, an internal default null value is used. If date time is in String format, the default value will be For the main time column of the table (time column specified in the in the table config), the main time column value must be in the range of |
In the pinot master (0.12.0-SNAPSHOT), We have simplified date time formats for the users. The formats now follow the pattern - timeFormat|pattern/timeUnit|
[timeZone/timeSize]
. The fields present in []
are completely optional. timeFormat can be one of EPOCH
, SIMPLE_DATE_FORMAT
or TIMESTAMP
.
TIMESTAMP
- This represents timestamp in milliseconds. It is equivalent to specifyingEPOCH|MILLISECONDS|1
Examples -TIMESTAMP
EPOCH
- This represents time intimeUnit
since00:00:00 UTC on 1 January 1970
, wheretimeUnit
is one of TimeUnit enum values, e.g.HOURS
,MINUTES
etc. You can also specify thetimeSize
parameter. This size is multiplied to the value present in the time column to get an actual timestamp. e.g. if timesize is 5 and value in time column is 4996308 minutes. The value that will be converted to epoch timestamp will be 4996308 * 5 * 60 * 1000 = 1498892400000 milliseconds. In simplest terms,EPOCH|SECONDS|5
denotes the count of intervals of length 5 seconds from epoch 0 to now.
Examples -EPOCH
- Defaults to MILLISECONDS (only inmaster
branch)EPOCH|SECONDS
EPOCH|SECONDS|5
SIMPLE_DATE_FORMAT
- This represents time in the string format. The pattern should be specified using the Joda's DateTimeFormat representation. In the master branch build, if no pattern is specified, we use ISO 8601 DateTimeFormat to parse the date times. Optionals are supported with ISO format so users can specify date time string inyyyy
oryyyy-MM
oryyyy-MM-dd
and so on
You can also specify optionaltimeZone
parameter which is the ID for a TimeZone, either an abbreviation such asPST
, a full name such asAmerica/Los_Angeles
, or a custom ID such asGMT-8:00
.
Examples -SIMPLE_DATE_FORMAT
(only inmaster
branch)SIMPLE_DATE_FORMAT|yyyy-MM-dd HH:mm:ss
SIMPLE_DATE_FORMAT|yyyy-MM-dd|IST
{% hint style="warning" %}
Only datetime timeformats in lexicographical order are support in Pinot. so yyyy-MM-dd
,MM-dd
and yyyy-dd
are valid while MM-dd-yyyy
is not.
The order is decided as year > month > day > hour > minutes > second.
{% endhint %}
These date-time formats are still supported in Pinot for backward compatibility. However, new users should prefer to use the formats mentioned in the previous sections.
You will need to provide the format of the date along with the data type in the schema. The format is described using the following syntax: timeSize:timeUnit:timeFormat:pattern
.
- time size - the size of the time unit. This size is multiplied to the value present in the time column to get an actual timestamp. e.g. if timesize is 5 and value in time column is 4996308 minutes. The value that will be converted to epoch timestamp will be 4996308 * 5 * 60 * 1000 = 1498892400000 milliseconds.
If your date is not inEPOCH
format, this value is not used and can be set to 1 or any other integer. - time unit - one of TimeUnit enum values. e.g.
HOURS
,MINUTES
etc. If your date is not inEPOCH
format, this value is not used and can be set toMILLISECONDS
or any other unit. - timeFormat - can be either
EPOCH
orSIMPLE_DATE_FORMAT
. If it isSIMPLE_DATE_FORMAT
, the pattern string is also specified. - pattern - This is optional and is only specified when the date is in
SIMPLE_DATE_FORMAT
. The pattern should be specified using Joda's DateTimeFormat representation. e.g. 2020-08-21 can be represented asyyyy-MM-dd
.
Here are some sample date-time formats you can use in the schema:
1:MILLISECONDS:EPOCH
- used when timestamp is in the epoch milliseconds and stored inLONG
format1:HOURS:EPOCH
- used when timestamp is in the epoch hours and stored inLONG
orINT
format1:DAYS:SIMPLE_DATE_FORMAT:yyyy-MM-dd
- when the date is inSTRING
format and has the pattern year-month-date. e.g. 2020-08-211:HOURS:SIMPLE_DATE_FORMAT:EEE MMM dd HH:mm:ss ZZZ yyyy
- when date is inSTRING
format. e.g. Mon Aug 24 12:36:50 America/Los_Angeles 2019
There are several built-in virtual columns inside the schema the can be used for debugging purposes:
Column Name | Column Type | Data Type | Description |
---|---|---|---|
$hostName | Dimension | STRING | Name of the server hosting the data |
$segmentName | Dimension | STRING | Name of the segment containing the record |
$docId | Dimension | INT | Document id of the record within the segment |
These virtual columns can be used in queries in a similar way to regular columns.
Apart from these, there's some advanced fields. These are common to all field specs.
Property | Description |
---|---|
maxLength | Max length of this column mainly applicable for dataTypes - STRING, JSON and BYTES |
virtualColumnProvider | Column value provider |
maxLengthExceedStrategy | Takes in 4 values: TRIM_LENGTH, ERROR, SUBSTITUTE_DEFAULT_VALUE, NO_ACTION. Default for STRING dataType is TRIM_LENGTH and for JSON and bytes field is NO_ACTION. |