Skip to content

Commit

Permalink
Add CerebrasLLMService docs
Browse files Browse the repository at this point in the history
  • Loading branch information
markbackman committed Dec 18, 2024
1 parent 9a8b133 commit 839b4db
Show file tree
Hide file tree
Showing 3 changed files with 195 additions and 0 deletions.
1 change: 1 addition & 0 deletions mint.json
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@
"pages": [
"server/services/llm/anthropic",
"server/services/llm/azure",
"server/services/llm/cerebras",
"server/services/llm/fireworks",
"server/services/llm/gemini",
"server/services/llm/grok",
Expand Down
193 changes: 193 additions & 0 deletions server/services/llm/cerebras.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
---
title: "Cerebras"
description: "LLM service implementation using Cerebras’s API with OpenAI-compatible interface"
---

## Overview

`CerebrasLLMService` provides access to Cerebras's language models through an OpenAI-compatible interface. It inherits from `OpenAILLMService` and supports streaming responses, function calling, and context management.

## Installation

To use `CerebrasLLMService`, install the required dependencies:

```bash
pip install "pipecat-ai[cerebras]"
```

You'll need to set up your Cerebras API key as an environment variable: `CEREBRAS_API_KEY`

## Configuration

### Constructor Parameters

<ParamField path="api_key" type="str" required>
Your Cerebras API key
</ParamField>

<ParamField path="model" type="str" default="llama-3.3-70b">
Model identifier
</ParamField>

<ParamField path="base_url" type="str" default="https://api.cerebras.ai/v1">
Cerebras API endpoint
</ParamField>

### Input Parameters

Inherits OpenAI-compatible parameters:

<ParamField path="max-completion-tokens" type="Optional[int]">
Maximum number of tokens to generate. Must be greater than or equal to 1
</ParamField>

<ParamField path="seed" type="Optional[int]">
Random seed for deterministic generation. Must be greater than or equal to 0
</ParamField>

<ParamField path="temperature" type="Optional[float]">
Controls randomness in the output. Range: [0.0, 1.5]
</ParamField>

<ParamField path="top_p" type="Optional[float]">
Controls diversity via nucleus sampling. Range: [0.0, 1.0]
</ParamField>

## Usage Example

```python
from pipecat.services.cerebras import CerebrasLLMService
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from openai.types.chat import ChatCompletionToolParam
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.task import PipelineParams, PipelineTask

# Configure service
llm = CerebrasLLMService(
api_key="your-cerebras-api-key",
model="llama-3.3-70b"
)

# Define tools for function calling
tools = [
ChatCompletionToolParam(
type="function",
function={
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use"
}
},
"required": ["location", "format"]
}
}
)
]

# Create context with system message and tools
context = OpenAILLMContext(
messages = [
{
"role": "system",
"content": """You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way.
You have one functions available:
1. get_current_weather is used to get current weather information.
Infer whether to use Fahrenheit or Celsius automatically based on the location, unless the user specifies a preference. Start by asking me for my location. Then, use 'get_weather_current' to give me a forecast. Respond to what the user said in a creative and helpful way.""",
},
]
tools=tools
)

# Register function handlers
async def fetch_weather(function_name, tool_call_id, args, llm, context, result_callback):
await result_callback({"conditions": "nice", "temperature": "75"})

llm.register_function(None, fetch_weather)

# Create context aggregator for message handling
context_aggregator = llm.create_context_aggregator(context)

# Set up pipeline
pipeline = Pipeline([
transport.input(),
context_aggregator.user(),
llm,
tts,
transport.output(),
context_aggregator.assistant()
])

# Create and configure task
task = PipelineTask(
pipeline,
PipelineParams(
allow_interruptions=True,
enable_metrics=True,
enable_usage_metrics=True,
),
)
```

## Methods

See the [LLM base class methods](/server/base-classes/llm#methods) for additional functionality.

## Function Calling

Supports OpenAI-compatible function calling. For optimal function calling performance, provide clear instructions in the system message about when and how to use functions.

## Available Models

Cerebras provides access to these models:

| Model Name | Description |
| --------------- | ------------------- |
| `llama3.1-8b` | Llama 3.1 8B model |
| `llama3.1-70b` | Llama 3.1 70B model |
| `llama-3.3-70b` | Llama 3.3 70B model |

## Frame Flow

Inherits the OpenAI LLM Service frame flow:

```mermaid
graph TD
A[Input Context] --> B[CerebrasLLMService]
B --> C[LLMFullResponseStartFrame]
B --> D[TextFrame Chunks]
B --> E[Function Calls]
B --> F[LLMFullResponseEndFrame]
E --> G[Function Results]
G --> B
```

## Metrics Support

The service collects standard LLM metrics:

- Token usage (prompt and completion)
- Processing duration
- Time to First Byte (TTFB)
- Function call metrics

## Notes

- OpenAI-compatible interface
- Supports streaming responses
- Handles function calling
- Manages conversation context
- Thread-safe processing
- Automatic error handling
1 change: 1 addition & 0 deletions server/services/supported-services.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ description: "AI services integrated with Pipecat and their setup requirements"
| ---------------------------------------------- | ----------------------------------- |
| [Anthropic](/server/services/llm/anthropic) | `pip install pipecat-ai[anthropic]` |
| [Azure](/server/services/llm/azure) | `pip install pipecat-ai[azure]` |
| [Cerebras](/server/services/llm/cerebras) | `pip install pipecat-ai[cerebras]` |
| [Fireworks AI](/server/services/llm/fireworks) | `pip install pipecat-ai[fireworks]` |
| [Google Gemini](/server/services/llm/gemini) | `pip install pipecat-ai[google]` |
| [Grok](/server/services/llm/grok) | `pip install pipecat-ai[grok]` |
Expand Down

0 comments on commit 839b4db

Please sign in to comment.