generated from mintlify/starter
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9a8b133
commit 839b4db
Showing
3 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
--- | ||
title: "Cerebras" | ||
description: "LLM service implementation using Cerebras’s API with OpenAI-compatible interface" | ||
--- | ||
|
||
## Overview | ||
|
||
`CerebrasLLMService` provides access to Cerebras's language models through an OpenAI-compatible interface. It inherits from `OpenAILLMService` and supports streaming responses, function calling, and context management. | ||
|
||
## Installation | ||
|
||
To use `CerebrasLLMService`, install the required dependencies: | ||
|
||
```bash | ||
pip install "pipecat-ai[cerebras]" | ||
``` | ||
|
||
You'll need to set up your Cerebras API key as an environment variable: `CEREBRAS_API_KEY` | ||
|
||
## Configuration | ||
|
||
### Constructor Parameters | ||
|
||
<ParamField path="api_key" type="str" required> | ||
Your Cerebras API key | ||
</ParamField> | ||
|
||
<ParamField path="model" type="str" default="llama-3.3-70b"> | ||
Model identifier | ||
</ParamField> | ||
|
||
<ParamField path="base_url" type="str" default="https://api.cerebras.ai/v1"> | ||
Cerebras API endpoint | ||
</ParamField> | ||
|
||
### Input Parameters | ||
|
||
Inherits OpenAI-compatible parameters: | ||
|
||
<ParamField path="max-completion-tokens" type="Optional[int]"> | ||
Maximum number of tokens to generate. Must be greater than or equal to 1 | ||
</ParamField> | ||
|
||
<ParamField path="seed" type="Optional[int]"> | ||
Random seed for deterministic generation. Must be greater than or equal to 0 | ||
</ParamField> | ||
|
||
<ParamField path="temperature" type="Optional[float]"> | ||
Controls randomness in the output. Range: [0.0, 1.5] | ||
</ParamField> | ||
|
||
<ParamField path="top_p" type="Optional[float]"> | ||
Controls diversity via nucleus sampling. Range: [0.0, 1.0] | ||
</ParamField> | ||
|
||
## Usage Example | ||
|
||
```python | ||
from pipecat.services.cerebras import CerebrasLLMService | ||
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext | ||
from openai.types.chat import ChatCompletionToolParam | ||
from pipecat.pipeline.pipeline import Pipeline | ||
from pipecat.pipeline.task import PipelineParams, PipelineTask | ||
|
||
# Configure service | ||
llm = CerebrasLLMService( | ||
api_key="your-cerebras-api-key", | ||
model="llama-3.3-70b" | ||
) | ||
|
||
# Define tools for function calling | ||
tools = [ | ||
ChatCompletionToolParam( | ||
type="function", | ||
function={ | ||
"name": "get_current_weather", | ||
"description": "Get the current weather", | ||
"parameters": { | ||
"type": "object", | ||
"properties": { | ||
"location": { | ||
"type": "string", | ||
"description": "The city and state, e.g. San Francisco, CA" | ||
}, | ||
"format": { | ||
"type": "string", | ||
"enum": ["celsius", "fahrenheit"], | ||
"description": "The temperature unit to use" | ||
} | ||
}, | ||
"required": ["location", "format"] | ||
} | ||
} | ||
) | ||
] | ||
|
||
# Create context with system message and tools | ||
context = OpenAILLMContext( | ||
messages = [ | ||
{ | ||
"role": "system", | ||
"content": """You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way. | ||
You have one functions available: | ||
1. get_current_weather is used to get current weather information. | ||
Infer whether to use Fahrenheit or Celsius automatically based on the location, unless the user specifies a preference. Start by asking me for my location. Then, use 'get_weather_current' to give me a forecast. Respond to what the user said in a creative and helpful way.""", | ||
}, | ||
] | ||
tools=tools | ||
) | ||
|
||
# Register function handlers | ||
async def fetch_weather(function_name, tool_call_id, args, llm, context, result_callback): | ||
await result_callback({"conditions": "nice", "temperature": "75"}) | ||
|
||
llm.register_function(None, fetch_weather) | ||
|
||
# Create context aggregator for message handling | ||
context_aggregator = llm.create_context_aggregator(context) | ||
|
||
# Set up pipeline | ||
pipeline = Pipeline([ | ||
transport.input(), | ||
context_aggregator.user(), | ||
llm, | ||
tts, | ||
transport.output(), | ||
context_aggregator.assistant() | ||
]) | ||
|
||
# Create and configure task | ||
task = PipelineTask( | ||
pipeline, | ||
PipelineParams( | ||
allow_interruptions=True, | ||
enable_metrics=True, | ||
enable_usage_metrics=True, | ||
), | ||
) | ||
``` | ||
|
||
## Methods | ||
|
||
See the [LLM base class methods](/server/base-classes/llm#methods) for additional functionality. | ||
|
||
## Function Calling | ||
|
||
Supports OpenAI-compatible function calling. For optimal function calling performance, provide clear instructions in the system message about when and how to use functions. | ||
|
||
## Available Models | ||
|
||
Cerebras provides access to these models: | ||
|
||
| Model Name | Description | | ||
| --------------- | ------------------- | | ||
| `llama3.1-8b` | Llama 3.1 8B model | | ||
| `llama3.1-70b` | Llama 3.1 70B model | | ||
| `llama-3.3-70b` | Llama 3.3 70B model | | ||
|
||
## Frame Flow | ||
|
||
Inherits the OpenAI LLM Service frame flow: | ||
|
||
```mermaid | ||
graph TD | ||
A[Input Context] --> B[CerebrasLLMService] | ||
B --> C[LLMFullResponseStartFrame] | ||
B --> D[TextFrame Chunks] | ||
B --> E[Function Calls] | ||
B --> F[LLMFullResponseEndFrame] | ||
E --> G[Function Results] | ||
G --> B | ||
``` | ||
|
||
## Metrics Support | ||
|
||
The service collects standard LLM metrics: | ||
|
||
- Token usage (prompt and completion) | ||
- Processing duration | ||
- Time to First Byte (TTFB) | ||
- Function call metrics | ||
|
||
## Notes | ||
|
||
- OpenAI-compatible interface | ||
- Supports streaming responses | ||
- Handles function calling | ||
- Manages conversation context | ||
- Thread-safe processing | ||
- Automatic error handling |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters