-
Notifications
You must be signed in to change notification settings - Fork 439
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f39b20d
commit 729aca3
Showing
2 changed files
with
195 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
# | ||
# Copyright (c) 2024, Daily | ||
# | ||
# SPDX-License-Identifier: BSD 2-Clause License | ||
# | ||
|
||
import asyncio | ||
import aiohttp | ||
import os | ||
import json | ||
import sys | ||
|
||
from pipecat.frames.frames import LLMMessagesFrame, Frame | ||
from pipecat.processors.frame_processor import FrameDirection, FrameProcessor | ||
from pipecat.pipeline.pipeline import Pipeline | ||
from pipecat.pipeline.runner import PipelineRunner | ||
from pipecat.pipeline.task import PipelineTask | ||
from pipecat.processors.aggregators.llm_response import ( | ||
LLMAssistantContextAggregator, | ||
LLMUserContextAggregator, | ||
) | ||
from pipecat.services.openai import OpenAILLMContextFrame, OpenAILLMContext | ||
from pipecat.processors.logger import FrameLogger | ||
from pipecat.services.elevenlabs import ElevenLabsTTSService | ||
from pipecat.services.openai import OpenAILLMService | ||
from pipecat.transports.services.daily import DailyParams, DailyTransport | ||
from pipecat.vad.silero import SileroVADAnalyzer | ||
from openai.types.chat import ( | ||
ChatCompletionSystemMessageParam, | ||
ChatCompletionFunctionMessageParam, | ||
ChatCompletionToolParam, | ||
ChatCompletionUserMessageParam, | ||
) | ||
from pipecat.frames.frames import ( | ||
LLMFullResponseStartFrame, | ||
LLMFullResponseEndFrame, | ||
LLMResponseEndFrame, | ||
LLMResponseStartFrame, | ||
LLMFunctionCallFrame, | ||
LLMFunctionStartFrame, | ||
TextFrame | ||
) | ||
|
||
from runner import configure | ||
|
||
from loguru import logger | ||
|
||
from dotenv import load_dotenv | ||
load_dotenv(override=True) | ||
|
||
logger.remove(0) | ||
logger.add(sys.stderr, level="DEBUG") | ||
|
||
|
||
class FunctionCaller(FrameProcessor): | ||
def __init__(self, context): | ||
self._context = context | ||
super().__init__() | ||
|
||
async def process_frame(self, frame: Frame, direction: FrameDirection): | ||
# When we receive function call frames, we need to ask the LLM to run a completion | ||
# again so it actually talks to the user | ||
if isinstance(frame, LLMFunctionCallFrame): | ||
tool_call = ChatCompletionFunctionMessageParam({ | ||
"role": "assistant", | ||
"tool_calls": [ | ||
{ | ||
"id": frame.tool_call_id, | ||
"function": { | ||
"arguments": frame.arguments, | ||
"name": frame.function_name | ||
}, | ||
"type": "function" | ||
} | ||
] | ||
|
||
}) | ||
self._context.add_message(tool_call) | ||
|
||
# This is where you'd actually call the function | ||
weather_result = { | ||
"city": "San Francisco, CA", | ||
"conditions": "Sunny and beautiful", | ||
"temperature": "75 degrees Fahrenheit" | ||
} | ||
print(f"weather_result: {weather_result}") | ||
result = ChatCompletionToolParam({ | ||
"tool_call_id": frame.tool_call_id, | ||
"role": "tool", | ||
"content": json.dumps(weather_result) | ||
}) | ||
print(f"result: {result}") | ||
try: | ||
self._context.add_message(result) | ||
except Exception as e: | ||
print(f"got exception: {e}") | ||
print(f"context now includes: {self._context.messages}") | ||
await self.push_frame(OpenAILLMContextFrame(self._context), FrameDirection.UPSTREAM) | ||
else: | ||
print(f"!!! Got a frame I'm forwarding: {frame}") | ||
await self.push_frame(frame) | ||
|
||
|
||
async def main(room_url: str, token): | ||
async with aiohttp.ClientSession() as session: | ||
transport = DailyTransport( | ||
room_url, | ||
token, | ||
"Respond bot", | ||
DailyParams( | ||
audio_out_enabled=True, | ||
transcription_enabled=True, | ||
vad_enabled=True, | ||
vad_analyzer=SileroVADAnalyzer() | ||
) | ||
) | ||
|
||
tts = ElevenLabsTTSService( | ||
aiohttp_session=session, | ||
api_key=os.getenv("ELEVENLABS_API_KEY"), | ||
voice_id=os.getenv("ELEVENLABS_VOICE_ID"), | ||
) | ||
|
||
llm = OpenAILLMService( | ||
api_key=os.getenv("OPENAI_API_KEY"), | ||
model="gpt-4-turbo-preview") | ||
|
||
fl_in = FrameLogger("Inner") | ||
fl_out = FrameLogger("Outer") | ||
|
||
tools = [ | ||
ChatCompletionToolParam( | ||
type="function", | ||
function={ | ||
"name": "get_current_weather", | ||
"description": "Get the current weather", | ||
"parameters": { | ||
"type": "object", | ||
"properties": { | ||
"location": { | ||
"type": "string", | ||
"description": "The city and state, e.g. San Francisco, CA", | ||
}, | ||
"format": { | ||
"type": "string", | ||
"enum": [ | ||
"celsius", | ||
"fahrenheit"], | ||
"description": "The temperature unit to use. Infer this from the users location.", | ||
}, | ||
}, | ||
"required": [ | ||
"location", | ||
"format"], | ||
}, | ||
})] | ||
messages = [ | ||
{ | ||
"role": "system", | ||
"content": "You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way. Your output will be converted to audio so don't include special characters in your answers. Respond to what the user said in a creative and helpful way.", | ||
}, | ||
] | ||
|
||
context = OpenAILLMContext(messages, tools) | ||
tma_in = LLMUserContextAggregator(context) | ||
tma_out = LLMAssistantContextAggregator(context) | ||
caller = FunctionCaller(context) | ||
pipeline = Pipeline([ | ||
fl_in, | ||
transport.input(), | ||
tma_in, | ||
llm, | ||
caller, | ||
fl_out, | ||
tts, | ||
transport.output(), | ||
tma_out | ||
]) | ||
|
||
task = PipelineTask(pipeline) | ||
|
||
@ transport.event_handler("on_first_participant_joined") | ||
async def on_first_participant_joined(transport, participant): | ||
transport.capture_participant_transcription(participant["id"]) | ||
# Kick off the conversation. | ||
await tts.say("Hi! Ask me about the weather in San Francisco.") | ||
|
||
runner = PipelineRunner() | ||
|
||
await runner.run(task) | ||
|
||
|
||
if __name__ == "__main__": | ||
(url, token) = configure() | ||
asyncio.run(main(url, token)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters