-
Notifications
You must be signed in to change notification settings - Fork 484
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #391 from sharvil/pr/add-lmnt
LMNT TTS
- Loading branch information
Showing
5 changed files
with
328 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# | ||
# Copyright (c) 2024, Daily | ||
# | ||
# SPDX-License-Identifier: BSD 2-Clause License | ||
# | ||
|
||
import aiohttp | ||
import asyncio | ||
import os | ||
import sys | ||
|
||
from pipecat.frames.frames import LLMMessagesFrame | ||
from pipecat.pipeline.pipeline import Pipeline | ||
from pipecat.pipeline.runner import PipelineRunner | ||
from pipecat.pipeline.task import PipelineParams, PipelineTask | ||
from pipecat.processors.aggregators.llm_response import ( | ||
LLMAssistantResponseAggregator, LLMUserResponseAggregator) | ||
from pipecat.services.lmnt import LmntTTSService | ||
from pipecat.services.openai import OpenAILLMService | ||
from pipecat.transports.services.daily import DailyParams, DailyTransport | ||
from pipecat.vad.silero import SileroVADAnalyzer | ||
|
||
from runner import configure | ||
|
||
from loguru import logger | ||
|
||
from dotenv import load_dotenv | ||
load_dotenv(override=True) | ||
|
||
logger.remove(0) | ||
logger.add(sys.stderr, level="DEBUG") | ||
|
||
|
||
async def main(): | ||
async with aiohttp.ClientSession() as session: | ||
(room_url, token) = await configure(session) | ||
|
||
transport = DailyTransport( | ||
room_url, | ||
token, | ||
"Respond bot", | ||
DailyParams( | ||
audio_out_enabled=True, | ||
audio_out_sample_rate=24000, | ||
transcription_enabled=True, | ||
vad_enabled=True, | ||
vad_analyzer=SileroVADAnalyzer() | ||
) | ||
) | ||
|
||
tts = LmntTTSService( | ||
api_key=os.getenv("LMNT_API_KEY"), | ||
voice="morgan" | ||
) | ||
|
||
llm = OpenAILLMService( | ||
api_key=os.getenv("OPENAI_API_KEY"), | ||
model="gpt-4o") | ||
|
||
messages = [ | ||
{ | ||
"role": "system", | ||
"content": "You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way. Your output will be converted to audio so don't include special characters in your answers. Respond to what the user said in a creative and helpful way.", | ||
}, | ||
] | ||
|
||
tma_in = LLMUserResponseAggregator(messages) | ||
tma_out = LLMAssistantResponseAggregator(messages) | ||
|
||
pipeline = Pipeline([ | ||
transport.input(), # Transport user input | ||
tma_in, # User responses | ||
llm, # LLM | ||
tts, # TTS | ||
transport.output(), # Transport bot output | ||
tma_out # Assistant spoken responses | ||
]) | ||
|
||
task = PipelineTask(pipeline, PipelineParams(allow_interruptions=True)) | ||
|
||
@transport.event_handler("on_first_participant_joined") | ||
async def on_first_participant_joined(transport, participant): | ||
transport.capture_participant_transcription(participant["id"]) | ||
# Kick off the conversation. | ||
messages.append( | ||
{"role": "system", "content": "Please introduce yourself to the user."}) | ||
await task.queue_frames([LLMMessagesFrame(messages)]) | ||
|
||
runner = PipelineRunner() | ||
|
||
await runner.run(task) | ||
|
||
|
||
if __name__ == "__main__": | ||
asyncio.run(main()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
# | ||
# Copyright (c) 2024, Daily | ||
# | ||
# SPDX-License-Identifier: BSD 2-Clause License | ||
# | ||
|
||
import json | ||
import uuid | ||
import base64 | ||
import asyncio | ||
import time | ||
|
||
from typing import AsyncGenerator | ||
|
||
from pipecat.processors.frame_processor import FrameDirection | ||
from pipecat.frames.frames import ( | ||
CancelFrame, | ||
ErrorFrame, | ||
Frame, | ||
AudioRawFrame, | ||
StartFrame, | ||
StartInterruptionFrame, | ||
EndFrame, | ||
TTSStartedFrame, | ||
TTSStoppedFrame, | ||
) | ||
from pipecat.services.ai_services import TTSService | ||
|
||
from loguru import logger | ||
|
||
# See .env.example for LMNT configuration needed | ||
try: | ||
from lmnt.api import Speech | ||
except ModuleNotFoundError as e: | ||
logger.error(f"Exception: {e}") | ||
logger.error( | ||
"In order to use LMNT, you need to `pip install pipecat-ai[lmnt]`. Also, set `LMNT_API_KEY` environment variable.") | ||
raise Exception(f"Missing module: {e}") | ||
|
||
|
||
class LmntTTSService(TTSService): | ||
|
||
def __init__( | ||
self, | ||
*, | ||
api_key: str, | ||
voice_id: str, | ||
sample_rate: int = 24000, | ||
language: str = "en", | ||
**kwargs): | ||
super().__init__(**kwargs) | ||
|
||
# Let TTSService produce TTSStoppedFrames after a short delay of | ||
# no activity. | ||
self._push_stop_frames = True | ||
|
||
self._api_key = api_key | ||
self._voice_id = voice_id | ||
self._output_format = { | ||
"container": "raw", | ||
"encoding": "pcm_s16le", | ||
"sample_rate": sample_rate, | ||
} | ||
self._language = language | ||
|
||
self._speech = None | ||
self._connection = None | ||
self._receive_task = None | ||
self._started = False | ||
|
||
def can_generate_metrics(self) -> bool: | ||
return True | ||
|
||
async def set_voice(self, voice: str): | ||
logger.debug(f"Switching TTS voice to: [{voice}]") | ||
self._voice_id = voice | ||
|
||
async def start(self, frame: StartFrame): | ||
await super().start(frame) | ||
await self._connect() | ||
|
||
async def stop(self, frame: EndFrame): | ||
await super().stop(frame) | ||
await self._disconnect() | ||
|
||
async def cancel(self, frame: CancelFrame): | ||
await super().cancel(frame) | ||
await self._disconnect() | ||
|
||
async def push_frame(self, frame: Frame, direction: FrameDirection = FrameDirection.DOWNSTREAM): | ||
await super().push_frame(frame, direction) | ||
if isinstance(frame, (TTSStoppedFrame, StartInterruptionFrame)): | ||
self._started = False | ||
|
||
async def _connect(self): | ||
try: | ||
self._speech = Speech() | ||
self._connection = await self._speech.synthesize_streaming(self._voice_id, format="raw", sample_rate=self._output_format["sample_rate"]) | ||
self._receive_task = self.get_event_loop().create_task(self._receive_task_handler()) | ||
except Exception as e: | ||
logger.exception(f"{self} initialization error: {e}") | ||
self._connection = None | ||
|
||
async def _disconnect(self): | ||
try: | ||
await self.stop_all_metrics() | ||
|
||
if self._receive_task: | ||
self._receive_task.cancel() | ||
await self._receive_task | ||
self._receive_task = None | ||
if self._connection: | ||
await self._connection.socket.close() | ||
self._connection = None | ||
if self._speech: | ||
await self._speech.close() | ||
self._speech = None | ||
self._started = False | ||
except Exception as e: | ||
logger.exception(f"{self} error closing websocket: {e}") | ||
|
||
async def _receive_task_handler(self): | ||
try: | ||
async for msg in self._connection: | ||
if "error" in msg: | ||
logger.error(f'{self} error: {msg["error"]}') | ||
await self.push_frame(TTSStoppedFrame()) | ||
await self.stop_all_metrics() | ||
await self.push_error(ErrorFrame(f'{self} error: {msg["error"]}')) | ||
elif "audio" in msg: | ||
await self.stop_ttfb_metrics() | ||
frame = AudioRawFrame( | ||
audio=msg["audio"], | ||
sample_rate=self._output_format["sample_rate"], | ||
num_channels=1 | ||
) | ||
await self.push_frame(frame) | ||
else: | ||
logger.error(f"LMNT error, unknown message type: {msg}") | ||
except asyncio.CancelledError: | ||
pass | ||
except Exception as e: | ||
logger.exception(f"{self} exception: {e}") | ||
|
||
async def run_tts(self, text: str) -> AsyncGenerator[Frame, None]: | ||
logger.debug(f"Generating TTS: [{text}]") | ||
|
||
try: | ||
if not self._connection: | ||
await self._connect() | ||
|
||
if not self._started: | ||
await self.push_frame(TTSStartedFrame()) | ||
await self.start_ttfb_metrics() | ||
self._started = True | ||
|
||
try: | ||
await self._connection.append_text(text) | ||
await self._connection.flush() | ||
await self.start_tts_usage_metrics(text) | ||
except Exception as e: | ||
logger.error(f"{self} error sending message: {e}") | ||
await self.push_frame(TTSStoppedFrame()) | ||
await self._disconnect() | ||
await self._connect() | ||
return | ||
yield None | ||
except Exception as e: | ||
logger.exception(f"{self} exception: {e}") |