Skip to content

Commit

Permalink
Added OpenAI and Fireworks vision services
Browse files Browse the repository at this point in the history
  • Loading branch information
chadbailey59 committed Apr 12, 2024
1 parent 0b75780 commit 7d49391
Show file tree
Hide file tree
Showing 6 changed files with 228 additions and 9 deletions.
3 changes: 3 additions & 0 deletions dot-env.template
Original file line number Diff line number Diff line change
Expand Up @@ -30,3 +30,6 @@ PLAY_HT_API_KEY=...

# OpenAI
OPENAI_API_KEY=...

# Fireworks
FIREWORKS_API_KEY=...
20 changes: 14 additions & 6 deletions examples/foundational/03-still-frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from dailyai.pipeline.pipeline import Pipeline
from dailyai.transports.daily_transport import DailyTransport
from dailyai.services.fal_ai_services import FalImageGenService
from dailyai.services.fireworks_ai_services import FireworksImageGenService

from runner import configure

Expand All @@ -30,13 +31,20 @@ async def main(room_url):
duration_minutes=1
)

imagegen = FalImageGenService(
params=FalImageGenService.InputParams(
image_size="square_hd"
),
# imagegen = FalImageGenService(
# params=FalImageGenService.InputParams(
# image_size="square_hd"
# ),
# aiohttp_session=session,
# key_id=os.getenv("FAL_KEY_ID"),
# key_secret=os.getenv("FAL_KEY_SECRET"),
# )

imagegen = FireworksImageGenService(
aiohttp_session=session,
key=os.getenv("FAL_KEY"),
)
api_key=os.getenv("FIREWORKS_API_KEY"),
model="accounts/fireworks/models/stable-diffusion-xl-1024-v1-0",
image_size="1024x1024")

pipeline = Pipeline([imagegen])

Expand Down
87 changes: 87 additions & 0 deletions examples/foundational/12a-fireworks-describe-video.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import asyncio
import aiohttp
import logging
import os

from typing import AsyncGenerator

from dailyai.pipeline.aggregators import FrameProcessor, UserResponseAggregator, VisionImageFrameAggregator

from dailyai.pipeline.frames import Frame, TextFrame, UserImageRequestFrame
from dailyai.pipeline.pipeline import Pipeline
from dailyai.services.elevenlabs_ai_service import ElevenLabsTTSService
from dailyai.services.open_ai_services import OpenAIVisionService
from dailyai.transports.daily_transport import DailyTransport

from runner import configure

from dotenv import load_dotenv
load_dotenv(override=True)

logging.basicConfig(format=f"%(levelno)s %(asctime)s %(message)s")
logger = logging.getLogger("dailyai")
logger.setLevel(logging.DEBUG)


class UserImageRequester(FrameProcessor):
participant_id: str

def set_participant_id(self, participant_id: str):
self.participant_id = participant_id

async def process_frame(self, frame: Frame) -> AsyncGenerator[Frame, None]:
if self.participant_id and isinstance(frame, TextFrame):
yield UserImageRequestFrame(self.participant_id)
yield frame


async def main(room_url: str, token):
async with aiohttp.ClientSession() as session:
transport = DailyTransport(
room_url,
token,
"Describe participant video",
duration_minutes=5,
mic_enabled=True,
mic_sample_rate=16000,
vad_enabled=True,
start_transcription=True,
video_rendering_enabled=True
)

tts = ElevenLabsTTSService(
aiohttp_session=session,
api_key=os.getenv("ELEVENLABS_API_KEY"),
voice_id=os.getenv("ELEVENLABS_VOICE_ID"),
)

user_response = UserResponseAggregator()

image_requester = UserImageRequester()

vision_aggregator = VisionImageFrameAggregator()

# If you run into weird description, try with use_cpu=True
img_desc = OpenAIVisionService(
api_key=os.getenv("OPENAI_API_KEY")
)

tts = ElevenLabsTTSService(
aiohttp_session=session,
api_key=os.getenv("ELEVENLABS_API_KEY"),
voice_id=os.getenv("ELEVENLABS_VOICE_ID"),
)

@transport.event_handler("on_first_other_participant_joined")
async def on_first_other_participant_joined(transport, participant):
await transport.say("Hi there! Feel free to ask me what I see.", tts)
transport.render_participant_video(participant["id"], framerate=0)
image_requester.set_participant_id(participant["id"])

pipeline = Pipeline([user_response, image_requester, vision_aggregator, img_desc, tts])

await transport.run(pipeline)

if __name__ == "__main__":
(url, token) = configure()
asyncio.run(main(url, token))
12 changes: 10 additions & 2 deletions src/dailyai/services/ai_services.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,12 +109,20 @@ def __init__(self, **kwargs):

@abstractmethod
async def run_vision(self, frame: VisionImageFrame) -> str:
print(f"### uh oh, abstract run vision")
pass

async def process_frame(self, frame: Frame) -> AsyncGenerator[Frame, None]:
print(f"### visionservice process frame, {frame}")
if isinstance(frame, VisionImageFrame):
description = await self.run_vision(frame)
yield TextFrame(description)
print(f"### ### calling self.run_vision")
if getattr(self, "run_vision_async"):
async for frame in self.run_vision_async(frame):
yield frame

else:
description = await self.run_vision(frame)
yield TextFrame(description)
else:
yield frame

Expand Down
45 changes: 45 additions & 0 deletions src/dailyai/services/fireworks_ai_services.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,9 @@
import aiohttp
import os

from typing import Literal

from dailyai.services.ai_services import ImageGenService, VisionService
from dailyai.services.openai_api_llm_service import BaseOpenAILLMService


Expand All @@ -16,3 +20,44 @@ class FireworksLLMService(BaseOpenAILLMService):
def __init__(self, model="accounts/fireworks/models/firefunction-v1", *args, **kwargs):
kwargs["base_url"] = "https://api.fireworks.ai/inference/v1"
super().__init__(model, *args, **kwargs)


class FireworksImageGenService(ImageGenService):

def __init__(
self,
*,
image_size: Literal["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"],
aiohttp_session: aiohttp.ClientSession,
api_key,
model="accounts/fireworks/models/stable-diffusion-xl-1024-v1-0",
):
super().__init__()
self._model = model
self._image_size = image_size
self._client = AsyncOpenAI(api_key=api_key,
base_url="https://api.fireworks.ai/inference/v1")
self._aiohttp_session = aiohttp_session

async def run_image_gen(self, prompt: str) -> tuple[str, bytes, tuple[int, int]]:
self.logger.info(f"Generating Fireworks image: {prompt}")

image = await self._client.images.generate(
prompt=prompt,
model=self._model,
n=1,
size=self._image_size
)
print(f"!!! image is {image}")
image_url = image.data[0].url
if not image_url:
raise Exception("No image provided in response", image)

# Load the image from the url
async with self._aiohttp_session.get(image_url) as response:
image_stream = io.BytesIO(await response.content.read())
image = Image.open(image_stream)
return (image_url, image.tobytes(), image.size)

class FireworksVisionService(VisionService):

70 changes: 69 additions & 1 deletion src/dailyai/services/open_ai_services.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,16 @@
import aiohttp
from PIL import Image
import io
import base64

from dailyai.services.ai_services import ImageGenService
from openai import AsyncOpenAI, AsyncStream

from openai.types.chat import (
ChatCompletionChunk,
)

from dailyai.pipeline.frames import VisionImageFrame, TextFrame
from dailyai.services.ai_services import ImageGenService, VisionService
from dailyai.services.openai_api_llm_service import BaseOpenAILLMService


Expand Down Expand Up @@ -56,3 +64,63 @@ async def run_image_gen(self, prompt: str) -> tuple[str, bytes, tuple[int, int]]
image_stream = io.BytesIO(await response.content.read())
image = Image.open(image_stream)
return (image_url, image.tobytes(), image.size)


class OpenAIVisionService(VisionService):
def __init__(
self,
*,
model="gpt-4-vision-preview",
api_key,
):
self._model = model
self._client = AsyncOpenAI(api_key=api_key)
super().__init__()

async def run_vision_async(self, frame):
print(f"!!! i got a run_vision call")
print(f"!!! run vision, frame: {frame}")
prompt = frame.text
IMAGE_WIDTH = frame.size[0]
IMAGE_HEIGHT = frame.size[1]
new_image = Image.frombytes(
'RGB', (IMAGE_WIDTH, IMAGE_HEIGHT), frame.image)

# Uncomment these lines to write the frame to a jpg in the same directory.
# current_path = os.getcwd()
# image_path = os.path.join(current_path, "image.jpg")
# image.save(image_path, format="JPEG")

jpeg_buffer = io.BytesIO()

new_image.save(jpeg_buffer, format='JPEG')

jpeg_bytes = jpeg_buffer.getvalue()
base64_image = base64.b64encode(jpeg_bytes).decode('utf-8')
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
]
print(f"!!! messages: {messages}")
chunks: AsyncStream[ChatCompletionChunk] = (
await self._client.chat.completions.create(
model=self._model,
stream=True,
messages=messages,
)
)
async for chunk in chunks:
if len(chunk.choices) == 0:
continue
if chunk.choices[0].delta.content:
yield TextFrame(chunk.choices[0].delta.content)

0 comments on commit 7d49391

Please sign in to comment.