Skip to content

Commit

Permalink
Add Together AI interruptible example
Browse files Browse the repository at this point in the history
  • Loading branch information
markbackman committed Sep 20, 2024
1 parent 1edb3a6 commit fde2bbb
Showing 1 changed file with 100 additions and 0 deletions.
100 changes: 100 additions & 0 deletions examples/foundational/07l-interruptible-together.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
#
# Copyright (c) 2024, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

import asyncio
import aiohttp
import os
import sys

from pipecat.frames.frames import LLMMessagesFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.llm_response import (
LLMAssistantResponseAggregator, LLMUserResponseAggregator)
from pipecat.services.cartesia import CartesiaTTSService
from pipecat.services.together import TogetherLLMService
from pipecat.transports.services.daily import DailyParams, DailyTransport
from pipecat.vad.silero import SileroVADAnalyzer

from runner import configure

from loguru import logger

from dotenv import load_dotenv
load_dotenv(override=True)

logger.remove(0)
logger.add(sys.stderr, level="DEBUG")


async def main():
async with aiohttp.ClientSession() as session:
(room_url, token) = await configure(session)

transport = DailyTransport(
room_url,
token,
"Respond bot",
DailyParams(
audio_out_enabled=True,
transcription_enabled=True,
vad_enabled=True,
vad_analyzer=SileroVADAnalyzer()
)
)

tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY"),
voice_id="79a125e8-cd45-4c13-8a67-188112f4dd22", # British Lady
)

llm = TogetherLLMService(
api_key=os.getenv("TOGETHER_API_KEY"),
model=os.getenv("TOGETHER_MODEL"),
params=TogetherLLMService.InputParams(
temperature=1.0,
frequency_penalty=2.0,
presence_penalty=0.0,
top_p=0.9,
top_k=40
)
)

messages = [
{
"role": "system",
"content": "You are a helpful LLM in a WebRTC call. Your goal is to demonstrate your capabilities in a succinct way. Your output will be converted to audio so don't include special characters in your answers. Respond to what the user said in a creative and helpful way.",
},
]

tma_in = LLMUserResponseAggregator(messages)
tma_out = LLMAssistantResponseAggregator(messages)

pipeline = Pipeline([
transport.input(), # Transport user input
tma_in, # User responses
llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
tma_out # Assistant spoken responses
])

task = PipelineTask(pipeline, PipelineParams(allow_interruptions=True))

@transport.event_handler("on_first_participant_joined")
async def on_first_participant_joined(transport, participant):
transport.capture_participant_transcription(participant["id"])
# Kick off the conversation.
await task.queue_frames([LLMMessagesFrame(messages)])

runner = PipelineRunner()

await runner.run(task)


if __name__ == "__main__":
asyncio.run(main())

0 comments on commit fde2bbb

Please sign in to comment.