-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds pass that folds operations into elementwise Linalg ops. Combined operations are rewritten into a single linalg.generic. Initially, a pattern for folding broadcast producer into an elementwise consumer is added. This allows to improve layout propagation, allows for fusion after tiling, and reduces the number of temporary buffers by eliminating explicit broadcast.
- Loading branch information
Showing
5 changed files
with
337 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
//===- FoldIntoEltwise.cpp ---------------------------------------*- C++-*-===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "TPP/Passes.h" | ||
#include "TPP/Transforms/Transforms.h" | ||
#include "TPP/Transforms/Utils/TransformUtils.h" | ||
#include "mlir/Dialect/Affine/IR/AffineOps.h" | ||
#include "mlir/Dialect/Arith/Utils/Utils.h" | ||
#include "mlir/Dialect/Linalg/IR/Linalg.h" | ||
#include "mlir/Dialect/Linalg/Transforms/Transforms.h" | ||
#include "mlir/Dialect/Linalg/Utils/Utils.h" | ||
#include "mlir/IR/AffineMap.h" | ||
#include "mlir/IR/PatternMatch.h" | ||
#include "mlir/Transforms/GreedyPatternRewriteDriver.h" | ||
|
||
using namespace mlir; | ||
using namespace tpp; | ||
|
||
namespace mlir { | ||
namespace tpp { | ||
#define GEN_PASS_DEF_FOLDINTOELTWISE | ||
#include "TPP/Passes.h.inc" | ||
} // namespace tpp | ||
} // namespace mlir | ||
|
||
namespace { | ||
|
||
// Create affine map between a producer operand and a consumer op indexing. | ||
// Assumes that the provided maps are composable. | ||
static AffineMap | ||
reindexProducerOperandIntoConsumer(AffineMap producerOperandMap, | ||
AffineMap producerResultMap, | ||
AffineMap consumerMap) { | ||
// Index producer result dimensions to its loops. | ||
AffineMap invProducerResultMap = inversePermutation(producerResultMap); | ||
// Index producer operand with respect to the producer result dimensions. | ||
AffineMap operandToResultMap = | ||
producerOperandMap.compose(invProducerResultMap); | ||
// Remap producer operand into consumer indexing. | ||
return operandToResultMap.compose(consumerMap); | ||
} | ||
|
||
// Fold linalg.broadcast into a linalg elementwise operation. | ||
struct BroadcastIntoEltwise | ||
: public OpInterfaceRewritePattern<linalg::LinalgOp> { | ||
using OpInterfaceRewritePattern<linalg::LinalgOp>::OpInterfaceRewritePattern; | ||
|
||
LogicalResult matchAndRewrite(linalg::LinalgOp linalgOp, | ||
PatternRewriter &rewriter) const override { | ||
if (!linalg::isElementwise(linalgOp)) | ||
return rewriter.notifyMatchFailure(linalgOp, | ||
"not an elementwise operation"); | ||
|
||
if (!linalgOp.hasPureTensorSemantics()) | ||
return rewriter.notifyMatchFailure(linalgOp, "expects tensor semantics"); | ||
|
||
// Look for broadcasts within inputs. | ||
// Reshaping output might be less beneficial and it is not considered now. | ||
if (llvm::none_of(linalgOp.getDpsInputs(), [](Value input) { | ||
auto op = input.getDefiningOp(); | ||
return op && isa<linalg::BroadcastOp>(op); | ||
})) | ||
return rewriter.notifyMatchFailure(linalgOp, "no broadcast producers"); | ||
|
||
SmallVector<Value> inputs = linalgOp.getDpsInputs(); | ||
ValueRange outputs = linalgOp.getDpsInits(); | ||
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray(); | ||
SmallVector<utils::IteratorType> iterators = | ||
linalgOp.getIteratorTypesArray(); | ||
SmallVector<Type> resultTypes = TypeRange(ValueRange{outputs}); | ||
|
||
for (auto [idx, input] : llvm::enumerate(linalgOp.getDpsInputs())) { | ||
auto broadcast = input.getDefiningOp<linalg::BroadcastOp>(); | ||
if (!broadcast) | ||
continue; | ||
|
||
// Update indexing maps. | ||
// The broadcasting can be captured by indexing maps alone w.r.t broadcast | ||
// input and consumer iteration domain. | ||
indexingMaps[idx] = reindexProducerOperandIntoConsumer( | ||
broadcast.getMatchingIndexingMap(broadcast.getDpsInputOperand(0)), | ||
broadcast.getMatchingIndexingMap(broadcast.getDpsInitOperand(0)), | ||
indexingMaps[idx]); | ||
// Use the broadcast input directly instead of the broadcast result. | ||
inputs[idx] = broadcast.getInput(); | ||
} | ||
|
||
// All Linalg ops have a region attached that can be inlined. | ||
assert(linalgOp->getNumRegions() == 1 && | ||
"expect op to have one region attached"); | ||
// Replace the original op with a generic with broadcast folded in. | ||
auto genericOp = rewriter.create<linalg::GenericOp>( | ||
linalgOp.getLoc(), resultTypes, inputs, outputs, indexingMaps, | ||
iterators); | ||
rewriter.inlineRegionBefore(linalgOp->getRegion(0), genericOp.getRegion(), | ||
genericOp.getRegion().begin()); | ||
rewriter.replaceOp(linalgOp, genericOp->getResults()); | ||
|
||
return success(); | ||
} | ||
}; | ||
|
||
struct FoldIntoEltwise : tpp::impl::FoldIntoEltwiseBase<FoldIntoEltwise> { | ||
void runOnOperation() override { | ||
RewritePatternSet patterns(&getContext()); | ||
patterns.add<BroadcastIntoEltwise>(patterns.getContext()); | ||
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); | ||
} | ||
}; | ||
|
||
} // namespace |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
// RUN: tpp-opt %s -fold-into-eltwise -split-input-file | FileCheck %s | ||
|
||
func.func @broadcast_into_add_outer_dim(%arg0: tensor<8xf32>, | ||
%arg1: tensor<16x8xf32>) -> tensor<16x8xf32> { | ||
%e = tensor.empty() : tensor<16x8xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<16x8xf32>) dimensions = [0] | ||
%1 = linalg.add ins(%0, %arg1 : tensor<16x8xf32>, tensor<16x8xf32>) | ||
outs(%e : tensor<16x8xf32>) -> tensor<16x8xf32> | ||
return %1 : tensor<16x8xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d1)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)> | ||
|
||
// CHECK-LABEL: @broadcast_into_add_outer_dim( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]],{{.*}}) | ||
// CHECK: arith.addf | ||
// CHECK: linalg.yield | ||
|
||
// ----- | ||
|
||
func.func @broadcast_into_add_inner_dim(%arg0: tensor<8xf32>, | ||
%arg1: tensor<8x4xf32>) -> tensor<8x4xf32> { | ||
%e = tensor.empty() : tensor<8x4xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1] | ||
%1 = linalg.add ins(%0, %arg1 : tensor<8x4xf32>, tensor<8x4xf32>) | ||
outs(%e : tensor<8x4xf32>) -> tensor<8x4xf32> | ||
return %1 : tensor<8x4xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)> | ||
|
||
// CHECK-LABEL: @broadcast_into_add_inner_dim( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]],{{.*}}) | ||
// CHECK: arith.addf | ||
// CHECK: linalg.yield | ||
|
||
// ----- | ||
|
||
func.func @broadcast_into_mul(%arg0: tensor<8xf32>, | ||
%arg1: tensor<8x4xf32>) -> tensor<8x4xf32> { | ||
%e = tensor.empty() : tensor<8x4xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1] | ||
%1 = linalg.mul ins(%0, %arg1 : tensor<8x4xf32>, tensor<8x4xf32>) | ||
outs(%e : tensor<8x4xf32>) -> tensor<8x4xf32> | ||
return %1 : tensor<8x4xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)> | ||
|
||
// CHECK-LABEL: @broadcast_into_mul( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]],{{.*}}) | ||
// CHECK: arith.mulf | ||
// CHECK: linalg.yield | ||
|
||
// ----- | ||
|
||
#map = affine_map<(d0, d1, d2) -> (d0, d2)> | ||
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | ||
func.func @broadcast_into_generic(%arg0: tensor<4xf32>, | ||
%arg1: tensor<4x2x8xf32>) -> tensor<4x2x8xf32> { | ||
%e = tensor.empty() : tensor<4x8xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<4xf32>) outs(%e : tensor<4x8xf32>) dimensions = [1] | ||
%1 = linalg.generic {indexing_maps = [#map, #map1], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%0 : tensor<4x8xf32>) outs(%arg1 : tensor<4x2x8xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
%1 = arith.addf %in, %out : f32 | ||
linalg.yield %1 : f32 | ||
} -> tensor<4x2x8xf32> | ||
return %1 : tensor<4x2x8xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | ||
|
||
// CHECK-LABEL: @broadcast_into_generic( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<4xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]] :{{.*}}) | ||
|
||
// ----- | ||
|
||
#map = affine_map<(d0, d1, d2) -> (d2, d0)> | ||
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | ||
func.func @broadcast_into_generic_transposed(%arg0: tensor<8xf32>, | ||
%arg1: tensor<4x2x8xf32>) -> tensor<4x2x8xf32> { | ||
%e = tensor.empty() : tensor<8x4xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1] | ||
%1 = linalg.generic {indexing_maps = [#map, #map1], | ||
iterator_types = ["parallel", "parallel", "parallel"]} | ||
ins(%0 : tensor<8x4xf32>) outs(%arg1 : tensor<4x2x8xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
%1 = arith.addf %in, %out : f32 | ||
linalg.yield %1 : f32 | ||
} -> tensor<4x2x8xf32> | ||
return %1 : tensor<4x2x8xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d2)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> | ||
|
||
// CHECK-LABEL: @broadcast_into_generic_transposed( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]] :{{.*}}) | ||
|
||
// ----- | ||
|
||
#map = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)> | ||
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | ||
func.func @broadcast_into_generic_multidim(%arg0: tensor<6x2xf32>, | ||
%arg1: tensor<2x4x6x8xf32>) -> tensor<2x4x6x8xf32> { | ||
%e = tensor.empty() : tensor<6x4x2xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<6x2xf32>) outs(%e : tensor<6x4x2xf32>) dimensions = [1] | ||
%1 = linalg.generic {indexing_maps = [#map, #map1], | ||
iterator_types = ["parallel", "parallel", "parallel", "parallel"]} | ||
ins(%0 : tensor<6x4x2xf32>) outs(%arg1 : tensor<2x4x6x8xf32>) { | ||
^bb0(%in: f32, %out: f32): | ||
%1 = arith.addf %in, %out : f32 | ||
linalg.yield %1 : f32 | ||
} -> tensor<2x4x6x8xf32> | ||
return %1 : tensor<2x4x6x8xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d0)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | ||
|
||
// CHECK-LABEL: @broadcast_into_generic_multidim( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<6x2xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]] | ||
// CHECK-SAME: ins(%[[ARG0]] :{{.*}}) | ||
|
||
// ----- | ||
|
||
#map = affine_map<(d0, d1) -> (d0, d1)> | ||
func.func @broadcast_into_generic_multiple_operands(%arg0: tensor<4xf32>, | ||
%arg1: tensor<4x8xf32>, %arg2: tensor<4x8xf32>) -> tensor<4x8xf32> { | ||
%e = tensor.empty() : tensor<4x8xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<4xf32>) outs(%e : tensor<4x8xf32>) dimensions = [1] | ||
%1 = linalg.generic {indexing_maps = [#map, #map, #map], | ||
iterator_types = ["parallel", "parallel"]} | ||
ins(%arg1, %0 : tensor<4x8xf32>, tensor<4x8xf32>) outs(%arg2 : tensor<4x8xf32>) { | ||
^bb0(%in: f32, %in1: f32, %out: f32): | ||
%1 = arith.addf %in, %out : f32 | ||
%2 = arith.addf %1, %in1 : f32 | ||
linalg.yield %2 : f32 | ||
} -> tensor<4x8xf32> | ||
return %1 : tensor<4x8xf32> | ||
} | ||
|
||
// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)> | ||
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0)> | ||
|
||
// CHECK-LABEL: @broadcast_into_generic_multiple_operands( | ||
// CHECK-SAME: %[[ARG0:.+]]: tensor<4xf32>, | ||
// CHECK-SAME: %[[ARG1:.+]]: tensor<4x8xf32>, | ||
// CHECK-SAME: %[[ARG2:.+]]: tensor<4x8xf32> | ||
// CHECK-NOT: linalg.broadcast | ||
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP]]] | ||
// CHECK-SAME: ins(%[[ARG1]], %[[ARG0]] :{{.*}}) | ||
|
||
// ----- | ||
|
||
#map = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)> | ||
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> | ||
func.func @no_fold_non_eltwise(%arg0: tensor<16xf32>, | ||
%arg1: tensor<32x64xf32>, | ||
%arg2: tensor<16x64xf32>) -> tensor<16x64xf32> { | ||
%e = tensor.empty() : tensor<16x32xf32> | ||
%0 = linalg.broadcast ins(%arg0 : tensor<16xf32>) outs(%e : tensor<16x32xf32>) dimensions = [1] | ||
%1 = linalg.matmul ins(%0, %arg1 : tensor<16x32xf32>, tensor<32x64xf32>) | ||
outs(%arg2 : tensor<16x64xf32>) -> tensor<16x64xf32> | ||
return %1 : tensor<16x64xf32> | ||
} | ||
|
||
// CHECK-LABEL: @no_fold_non_eltwise( | ||
// CHECK: linalg.broadcast | ||
// CHECK: linalg.matmul | ||
|
||
// ----- | ||
|
||
func.func @no_fold_non_tensor(%arg0: memref<8xf32>, | ||
%arg1: memref<8x4xf32>, | ||
%arg2: memref<8x4xf32>) { | ||
linalg.broadcast ins(%arg0 : memref<8xf32>) outs(%arg2 : memref<8x4xf32>) dimensions = [1] | ||
linalg.add ins(%arg2, %arg1 : memref<8x4xf32>, memref<8x4xf32>) | ||
outs(%arg2 : memref<8x4xf32>) | ||
return | ||
} | ||
|
||
// CHECK-LABEL: @no_fold_non_tensor( | ||
// CHECK: linalg.broadcast | ||
// CHECK: linalg.add |