Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fold into eltwise pass #953

Merged
merged 2 commits into from
Aug 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions include/TPP/Passes.td
Original file line number Diff line number Diff line change
Expand Up @@ -504,4 +504,15 @@ def LinalgToXeGPU : Pass<"linalg-to-xegpu", "func::FuncOp"> {
];
}

def FoldIntoEltwise : Pass<"fold-into-eltwise", "ModuleOp"> {
let summary = "Fold operations into elementwise ops.";
let description = [{
Fold operations into Linalg elementwise ops.
Results in linalg.generic representation.
}];
let dependentDialects = ["linalg::LinalgDialect",
"arith::ArithDialect",
"affine::AffineDialect"];
}

#endif // TPP_DIALECT_TPP_PASSES
1 change: 1 addition & 0 deletions lib/TPP/DefaultTppPasses.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ struct DefaultTppPasses
pm.addNestedPass<func::FuncOp>(createConvertLinalgToLoopsPass());
pm.addPass(createCleanup());
} else {
pm.addPass(createFoldIntoEltwise());
pm.addNestedPass<func::FuncOp>(createConvertAddInplacePass());
// Convert linalg.batch_matmul to linalg.matmul.
pm.addPass(createRewriteBatchMatmulToMatmul());
Expand Down
1 change: 1 addition & 0 deletions lib/TPP/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ add_mlir_library(TPPTransforms
IntelAMXTileConfigHoisting.cpp
LinalgConvertCompareSelectToMaximumfPass.cpp
ConvertAddInplacePass.cpp
FoldIntoEltwise.cpp

ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/TPP
Expand Down
116 changes: 116 additions & 0 deletions lib/TPP/Transforms/FoldIntoEltwise.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
//===- FoldIntoEltwise.cpp ---------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "TPP/Passes.h"
#include "TPP/Transforms/Transforms.h"
#include "TPP/Transforms/Utils/TransformUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"

using namespace mlir;
using namespace tpp;

namespace mlir {
namespace tpp {
#define GEN_PASS_DEF_FOLDINTOELTWISE
#include "TPP/Passes.h.inc"
} // namespace tpp
} // namespace mlir

namespace {

// Create affine map between a producer operand and a consumer op indexing.
// Assumes that the provided maps are composable.
static AffineMap
reindexProducerOperandIntoConsumer(AffineMap producerOperandMap,
AffineMap producerResultMap,
AffineMap consumerMap) {
// Index producer result dimensions to its loops.
AffineMap invProducerResultMap = inversePermutation(producerResultMap);
// Index producer operand with respect to the producer result dimensions.
AffineMap operandToResultMap =
producerOperandMap.compose(invProducerResultMap);
// Remap producer operand into consumer indexing.
return operandToResultMap.compose(consumerMap);
}

// Fold linalg.broadcast into a linalg elementwise operation.
struct BroadcastIntoEltwise
: public OpInterfaceRewritePattern<linalg::LinalgOp> {
using OpInterfaceRewritePattern<linalg::LinalgOp>::OpInterfaceRewritePattern;

LogicalResult matchAndRewrite(linalg::LinalgOp linalgOp,
PatternRewriter &rewriter) const override {
if (!linalg::isElementwise(linalgOp))
return rewriter.notifyMatchFailure(linalgOp,
"not an elementwise operation");

if (!linalgOp.hasPureTensorSemantics())
return rewriter.notifyMatchFailure(linalgOp, "expects tensor semantics");

// Look for broadcasts within inputs.
// Reshaping output might be less beneficial and it is not considered now.
if (llvm::none_of(linalgOp.getDpsInputs(), [](Value input) {
auto op = input.getDefiningOp();
return op && isa<linalg::BroadcastOp>(op);
}))
return rewriter.notifyMatchFailure(linalgOp, "no broadcast producers");

SmallVector<Value> inputs = linalgOp.getDpsInputs();
ValueRange outputs = linalgOp.getDpsInits();
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
SmallVector<utils::IteratorType> iterators =
linalgOp.getIteratorTypesArray();
SmallVector<Type> resultTypes = TypeRange(ValueRange{outputs});

for (auto [idx, input] : llvm::enumerate(linalgOp.getDpsInputs())) {
auto broadcast = input.getDefiningOp<linalg::BroadcastOp>();
if (!broadcast)
continue;

// Update indexing maps.
// The broadcasting can be captured by indexing maps alone w.r.t broadcast
// input and consumer iteration domain.
indexingMaps[idx] = reindexProducerOperandIntoConsumer(
broadcast.getMatchingIndexingMap(broadcast.getDpsInputOperand(0)),
broadcast.getMatchingIndexingMap(broadcast.getDpsInitOperand(0)),
indexingMaps[idx]);
// Use the broadcast input directly instead of the broadcast result.
inputs[idx] = broadcast.getInput();
}

// All Linalg ops have a region attached that can be inlined.
assert(linalgOp->getNumRegions() == 1 &&
"expect op to have one region attached");
// Replace the original op with a generic with broadcast folded in.
auto genericOp = rewriter.create<linalg::GenericOp>(
linalgOp.getLoc(), resultTypes, inputs, outputs, indexingMaps,
iterators);
rewriter.inlineRegionBefore(linalgOp->getRegion(0), genericOp.getRegion(),
genericOp.getRegion().begin());
rewriter.replaceOp(linalgOp, genericOp->getResults());

return success();
}
};

struct FoldIntoEltwise : tpp::impl::FoldIntoEltwiseBase<FoldIntoEltwise> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
patterns.add<BroadcastIntoEltwise>(patterns.getContext());
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};

} // namespace
208 changes: 208 additions & 0 deletions test/Passes/pass-fold-into-eltwise.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
// RUN: tpp-opt %s -fold-into-eltwise -split-input-file | FileCheck %s

func.func @broadcast_into_add_outer_dim(%arg0: tensor<8xf32>,
%arg1: tensor<16x8xf32>) -> tensor<16x8xf32> {
%e = tensor.empty() : tensor<16x8xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<16x8xf32>) dimensions = [0]
%1 = linalg.add ins(%0, %arg1 : tensor<16x8xf32>, tensor<16x8xf32>)
outs(%e : tensor<16x8xf32>) -> tensor<16x8xf32>
return %1 : tensor<16x8xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d1)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>

// CHECK-LABEL: @broadcast_into_add_outer_dim(
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]],{{.*}})
// CHECK: arith.addf
// CHECK: linalg.yield

// -----

func.func @broadcast_into_add_inner_dim(%arg0: tensor<8xf32>,
%arg1: tensor<8x4xf32>) -> tensor<8x4xf32> {
%e = tensor.empty() : tensor<8x4xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1]
%1 = linalg.add ins(%0, %arg1 : tensor<8x4xf32>, tensor<8x4xf32>)
outs(%e : tensor<8x4xf32>) -> tensor<8x4xf32>
return %1 : tensor<8x4xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>

// CHECK-LABEL: @broadcast_into_add_inner_dim(
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]],{{.*}})
// CHECK: arith.addf
// CHECK: linalg.yield

// -----

func.func @broadcast_into_mul(%arg0: tensor<8xf32>,
%arg1: tensor<8x4xf32>) -> tensor<8x4xf32> {
%e = tensor.empty() : tensor<8x4xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1]
%1 = linalg.mul ins(%0, %arg1 : tensor<8x4xf32>, tensor<8x4xf32>)
outs(%e : tensor<8x4xf32>) -> tensor<8x4xf32>
return %1 : tensor<8x4xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>

// CHECK-LABEL: @broadcast_into_mul(
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]],{{.*}})
// CHECK: arith.mulf
// CHECK: linalg.yield

// -----

#map = affine_map<(d0, d1, d2) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @broadcast_into_generic(%arg0: tensor<4xf32>,
%arg1: tensor<4x2x8xf32>) -> tensor<4x2x8xf32> {
%e = tensor.empty() : tensor<4x8xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<4xf32>) outs(%e : tensor<4x8xf32>) dimensions = [1]
%1 = linalg.generic {indexing_maps = [#map, #map1],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%0 : tensor<4x8xf32>) outs(%arg1 : tensor<4x2x8xf32>) {
^bb0(%in: f32, %out: f32):
%1 = arith.addf %in, %out : f32
linalg.yield %1 : f32
} -> tensor<4x2x8xf32>
return %1 : tensor<4x2x8xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>

// CHECK-LABEL: @broadcast_into_generic(
// CHECK-SAME: %[[ARG0:.+]]: tensor<4xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]] :{{.*}})

// -----

#map = affine_map<(d0, d1, d2) -> (d2, d0)>
#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
func.func @broadcast_into_generic_transposed(%arg0: tensor<8xf32>,
%arg1: tensor<4x2x8xf32>) -> tensor<4x2x8xf32> {
%e = tensor.empty() : tensor<8x4xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<8xf32>) outs(%e : tensor<8x4xf32>) dimensions = [1]
%1 = linalg.generic {indexing_maps = [#map, #map1],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%0 : tensor<8x4xf32>) outs(%arg1 : tensor<4x2x8xf32>) {
^bb0(%in: f32, %out: f32):
%1 = arith.addf %in, %out : f32
linalg.yield %1 : f32
} -> tensor<4x2x8xf32>
return %1 : tensor<4x2x8xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>

// CHECK-LABEL: @broadcast_into_generic_transposed(
// CHECK-SAME: %[[ARG0:.+]]: tensor<8xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]] :{{.*}})

// -----

#map = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @broadcast_into_generic_multidim(%arg0: tensor<6x2xf32>,
%arg1: tensor<2x4x6x8xf32>) -> tensor<2x4x6x8xf32> {
%e = tensor.empty() : tensor<6x4x2xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<6x2xf32>) outs(%e : tensor<6x4x2xf32>) dimensions = [1]
%1 = linalg.generic {indexing_maps = [#map, #map1],
iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
ins(%0 : tensor<6x4x2xf32>) outs(%arg1 : tensor<2x4x6x8xf32>) {
^bb0(%in: f32, %out: f32):
%1 = arith.addf %in, %out : f32
linalg.yield %1 : f32
} -> tensor<2x4x6x8xf32>
return %1 : tensor<2x4x6x8xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d0)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>

// CHECK-LABEL: @broadcast_into_generic_multidim(
// CHECK-SAME: %[[ARG0:.+]]: tensor<6x2xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]]]
// CHECK-SAME: ins(%[[ARG0]] :{{.*}})

// -----

#map = affine_map<(d0, d1) -> (d0, d1)>
func.func @broadcast_into_generic_multiple_operands(%arg0: tensor<4xf32>,
%arg1: tensor<4x8xf32>, %arg2: tensor<4x8xf32>) -> tensor<4x8xf32> {
%e = tensor.empty() : tensor<4x8xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<4xf32>) outs(%e : tensor<4x8xf32>) dimensions = [1]
%1 = linalg.generic {indexing_maps = [#map, #map, #map],
iterator_types = ["parallel", "parallel"]}
ins(%arg1, %0 : tensor<4x8xf32>, tensor<4x8xf32>) outs(%arg2 : tensor<4x8xf32>) {
^bb0(%in: f32, %in1: f32, %out: f32):
%1 = arith.addf %in, %out : f32
%2 = arith.addf %1, %in1 : f32
linalg.yield %2 : f32
} -> tensor<4x8xf32>
return %1 : tensor<4x8xf32>
}

// CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0)>

// CHECK-LABEL: @broadcast_into_generic_multiple_operands(
// CHECK-SAME: %[[ARG0:.+]]: tensor<4xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<4x8xf32>,
// CHECK-SAME: %[[ARG2:.+]]: tensor<4x8xf32>
// CHECK-NOT: linalg.broadcast
// CHECK: linalg.generic{{.*}}indexing_maps = [#[[MAP]], #[[MAP1]], #[[MAP]]]
// CHECK-SAME: ins(%[[ARG1]], %[[ARG0]] :{{.*}})

// -----

#map = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
func.func @no_fold_non_eltwise(%arg0: tensor<16xf32>,
%arg1: tensor<32x64xf32>,
%arg2: tensor<16x64xf32>) -> tensor<16x64xf32> {
%e = tensor.empty() : tensor<16x32xf32>
%0 = linalg.broadcast ins(%arg0 : tensor<16xf32>) outs(%e : tensor<16x32xf32>) dimensions = [1]
%1 = linalg.matmul ins(%0, %arg1 : tensor<16x32xf32>, tensor<32x64xf32>)
outs(%arg2 : tensor<16x64xf32>) -> tensor<16x64xf32>
return %1 : tensor<16x64xf32>
}

// CHECK-LABEL: @no_fold_non_eltwise(
// CHECK: linalg.broadcast
// CHECK: linalg.matmul

// -----

func.func @no_fold_non_tensor(%arg0: memref<8xf32>,
%arg1: memref<8x4xf32>,
%arg2: memref<8x4xf32>) {
linalg.broadcast ins(%arg0 : memref<8xf32>) outs(%arg2 : memref<8x4xf32>) dimensions = [1]
linalg.add ins(%arg2, %arg1 : memref<8x4xf32>, memref<8x4xf32>)
outs(%arg2 : memref<8x4xf32>)
return
}

// CHECK-LABEL: @no_fold_non_tensor(
// CHECK: linalg.broadcast
// CHECK: linalg.add