Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

updating standard preamble names in docs #169

Merged
merged 1 commit into from
Dec 4, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 27 additions & 27 deletions res/manual/src/tptp.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,78 +8,78 @@ The standard preamble (standard_interpretations.p) contains (problem-independent
#### Types
The type declarations define the sorts of the target (formula representation) language (the numeral type corresponds to `vampire`'s built-in integer type, `$int`):
```
tff(type, type, general: $tType).
tff(type, type, symbol: $tType).
tff(general_type, type, general: $tType).
tff(symbol_type, type, symbol: $tType).
```

Objects within the universe of a subsort must be mapped to an object within the supersort universe:
```
tff(type, type, f__integer__: ($int) > general).
tff(type, type, f__symbolic__: (symbol) > general).
tff(type, type, p__is_integer__: (general) > $o).
tff(type, type, p__is_symbolic__: (general) > $o).
tff(f__integer___decl, type, f__integer__: ($int) > general).
tff(f__symbolic___decl, type, f__symbolic__: (symbol) > general).
tff(p__is_integer__decl, type, p__is_integer__: (general) > $o).
tff(p__is_symbolic__decl, type, p__is_symbolic__: (general) > $o).
```

`#inf` and `#sup` are special general terms which do not belong to the symbol or numeral subsorts:
```
tff(type, type, c__infimum__: general).
tff(type, type, c__supremum__: general).
tff(inf_type, type, c__infimum__: general).
tff(sup_type, type, c__supremum__: general).
```

General terms are ordered:
```
tff(type, type, p__less_equal__: (general * general) > $o).
tff(type, type, p__less__: (general * general) > $o).
tff(type, type, p__greater_equal__: (general * general) > $o).
tff(type, type, p__greater__: (general * general) > $o).
tff(p__less_equal__decl, type, p__less_equal__: (general * general) > $o).
tff(p__less__decl, type, p__less__: (general * general) > $o).
tff(p__greater_equal__decl, type, p__greater_equal__: (general * general) > $o).
tff(p__greater__decl, type, p__greater__: (general * general) > $o).
```

#### Axioms

```
tff(axiom, axiom, ![X: general]: (p__is_integer__(X) <=> (?[N: $int]: (X = f__integer__(N))))).
tff(axiom, axiom, ![X1: general]: (p__is_symbolic__(X1) <=> (?[X2: symbol]: (X1 = f__symbolic__(X2))))).
tff(p__is_integer__def_ax, axiom, ![X: general]: (p__is_integer__(X) <=> (?[N: $int]: (X = f__integer__(N))))).
tff(p__is_symbolic__def_ax, axiom, ![X1: general]: (p__is_symbolic__(X1) <=> (?[X2: symbol]: (X1 = f__symbolic__(X2))))).
```

The universe of general terms consists of symbols, numerals, `#inf`, and `#sup`:
```
tff(axiom, axiom, ![X: general]: ((X = c__infimum__) | p__is_integer__(X) | p__is_symbolic__(X) | (X = c__supremum__))).
tff(general_universe_ax, axiom, ![X: general]: ((X = c__infimum__) | p__is_integer__(X) | p__is_symbolic__(X) | (X = c__supremum__))).
```

The mappings from subsorts to supersorts should preserve equality between terms:
```
tff(axiom, axiom, ![N1: $int, N2: $int]: ((f__integer__(N1) = f__integer__(N2)) <=> (N1 = N2))).
tff(axiom, axiom, ![S1: symbol, S2: symbol]: ((f__symbolic__(S1) = f__symbolic__(S2)) <=> (S1 = S2))).
tff(f__integer__def_ax, axiom, ![N1: $int, N2: $int]: ((f__integer__(N1) = f__integer__(N2)) <=> (N1 = N2))).
tff(f__symbolic__def_ax, axiom, ![S1: symbol, S2: symbol]: ((f__symbolic__(S1) = f__symbolic__(S2)) <=> (S1 = S2))).
```

Numerals are ordered analogously to integers:
```
tff(axiom, axiom, ![N1: $int, N2: $int]: (p__less_equal__(f__integer__(N1), f__integer__(N2)) <=> $lesseq(N1, N2))).
tff(numeral_ordering_ax, axiom, ![N1: $int, N2: $int]: (p__less_equal__(f__integer__(N1), f__integer__(N2)) <=> $lesseq(N1, N2))).
```

The ordering is transitive:
```
tff(axiom, axiom, ![X1: general, X2: general, X3: general]: ((p__less_equal__(X1, X2) & p__less_equal__(X2, X3)) => p__less_equal__(X1, X3))).
tff(transitive_ordering_ax, axiom, ![X1: general, X2: general, X3: general]: ((p__less_equal__(X1, X2) & p__less_equal__(X2, X3)) => p__less_equal__(X1, X3))).
```

The ordering is total:
```
tff(axiom, axiom, ![X1: general, X2: general]: ((p__less_equal__(X1, X2) & p__less_equal__(X2, X1)) => (X1 = X2))).
tff(axiom, axiom, ![X1: general, X2: general]: (p__less_equal__(X1, X2) | p__less_equal__(X2, X1))).
tff(antisymmetric_ordering_ax, axiom, ![X1: general, X2: general]: ((p__less_equal__(X1, X2) & p__less_equal__(X2, X1)) => (X1 = X2))).
tff(strongly_connected_ordering_ax, axiom, ![X1: general, X2: general]: (p__less_equal__(X1, X2) | p__less_equal__(X2, X1))).
```

The remaining relations are defined in terms of less or equal:
```
tff(axiom, axiom, ![X1: general, X2: general]: (p__less__(X1, X2) <=> (p__less_equal__(X1, X2) & (X1 != X2)))).
tff(axiom, axiom, ![X1: general, X2: general]: (p__greater_equal__(X1, X2) <=> p__less_equal__(X2, X1))).
tff(axiom, axiom, ![X1: general, X2: general]: (p__greater__(X1, X2) <=> (p__less_equal__(X2, X1) & (X1 != X2)))).
tff(p__less__def_ax, axiom, ![X1: general, X2: general]: (p__less__(X1, X2) <=> (p__less_equal__(X1, X2) & (X1 != X2)))).
tff(p__greater_equal__def_ax, axiom, ![X1: general, X2: general]: (p__greater_equal__(X1, X2) <=> p__less_equal__(X2, X1))).
tff(p__greater__def_ax, axiom, ![X1: general, X2: general]: (p__greater__(X1, X2) <=> (p__less_equal__(X2, X1) & (X1 != X2)))).
```

`#inf` is the minimum general term, numerals are less than symbols, and `#sup` is the maximum general term:
```
tff(axiom, axiom, ![N: $int]: p__less__(c__infimum__, f__integer__(N))).
tff(axiom, axiom, ![N: $int, S: symbol]: p__less__(f__integer__(N), f__symbolic__(S))).
tff(axiom, axiom, ![S: symbol]: p__less__(f__symbolic__(S), c__supremum__)).
tff(minimal_element_ax, axiom, ![N: $int]: p__less__(c__infimum__, f__integer__(N))).
tff(numerals_less_than_symbols_ax, axiom, ![N: $int, S: symbol]: p__less__(f__integer__(N), f__symbolic__(S))).
tff(maximal_element_ax, axiom, ![S: symbol]: p__less__(f__symbolic__(S), c__supremum__)).
```

## Axioms Supporting External Equivalence
Expand Down
Loading