Skip to content

Latest commit

Β 

History

History
45 lines (36 loc) Β· 937 Bytes

README.md

File metadata and controls

45 lines (36 loc) Β· 937 Bytes

Deep Audio Steganography

Training and predicting

To train a brand new model:

./train.py [-e epochs] [-s samples] [-b batch] \
    [-f fft] [-d datadir] [--fixedDataset]

To predict from a given model:

./predict.py [--skip-plot] --model path/to/model.hdf5 \
    --secret path/to/secret.wav \
    --cover path/to/cover.wav

To check parsing procedures without involving a trained model:

./transform.py

Dataset

Download the TIMIT dataset and extract it into the root of the project. Strip the dataset's first two folder in the following way:

data
β”œβ”€β”€ PHONCODE.DOC
β”œβ”€β”€ PROMPTS.TXT
β”œβ”€β”€ README.DOC
β”œβ”€β”€ SPKRINFO.TXT
β”œβ”€β”€ SPKRSENT.TXT
β”œβ”€β”€ TEST
β”œβ”€β”€ test_data.csv
β”œβ”€β”€ TESTSET.DOC
β”œβ”€β”€ TIMITDIC.DOC
β”œβ”€β”€ TIMITDIC.TXT
β”œβ”€β”€ TRAIN
└── train_data.csv

To cut/extend dataset to a fixed length, fix_dataset.sh can be used.