To train a brand new model:
./train.py [-e epochs] [-s samples] [-b batch] \
[-f fft] [-d datadir] [--fixedDataset]
To predict from a given model:
./predict.py [--skip-plot] --model path/to/model.hdf5 \
--secret path/to/secret.wav \
--cover path/to/cover.wav
To check parsing procedures without involving a trained model:
./transform.py
Download the TIMIT dataset and extract it into the root of the project. Strip the dataset's first two folder in the following way:
data
βββ PHONCODE.DOC
βββ PROMPTS.TXT
βββ README.DOC
βββ SPKRINFO.TXT
βββ SPKRSENT.TXT
βββ TEST
βββ test_data.csv
βββ TESTSET.DOC
βββ TIMITDIC.DOC
βββ TIMITDIC.TXT
βββ TRAIN
βββ train_data.csv
To cut/extend dataset to a fixed length, fix_dataset.sh
can be used.