This is the code system file for running our end-to-end friction implementation on your system and testing out the results
Download ml-dms dataset from https://github.com/apple/ml-dms-dataset
Download the corresponding images by following https://github.com/JunweiZheng93/MATERobot/
Download VAST dataset from https://github.com/RIVeR-Lab/vast_data/
Checkpoints can be downloaded from -- https://drive.google.com/drive/folders/1OUrhzb3kesxPONCfVrQcIYcmYhSZ9V2l?usp=drive_link
Once the data folder is populated with dataset, execute
cd utils
python3 generate_csv_dms.py
python3 generate_csv_vast.py
Checkpoints are in checkpoints
folder and can be used to visualize the results.
python3 test.py #runs all the models and plots the results
python3 train.py --model [endtoend | unet_reg | unet_seg | srcnn] --epochs num_epochs --batch_size batch_size
Example
python3 train.py --model endtoend --epochs 10 --batch_size 100
Note due to preprocessing in VAST dataset it may be possible that some datapoints are dropped, it is highly recommended to use a larger batch size (greater than 100).
If you find this code useful, please consider citing our paper:
@misc{prajapati2024predictivemappingspectralsignatures,
title={Predictive Mapping of Spectral Signatures from RGB Imagery for Off-Road Terrain Analysis},
author={Sarvesh Prajapati and Ananya Trivedi and Bruce Maxwell and Taskin Padir},
year={2024},
eprint={2405.04979},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2405.04979},
}
- https://github.com/JunweiZheng93/MATERobot/ -- for DMS Downloader
- https://github.com/RIVeR-Lab/vast_data/ -- VAST dataset
- https://github.com/apple/ml-dms-dataset -- ml-dms dataset