Skip to content

prajapatisarvesh/EF-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predictive Mapping of Spectral Signatures from RGB Imagery for Off-Road Terrain Analysis

Model Architecture

This is the code system file for running our end-to-end friction implementation on your system and testing out the results

Preparing the dataset folder

Download ml-dms dataset from https://github.com/apple/ml-dms-dataset
Download the corresponding images by following https://github.com/JunweiZheng93/MATERobot/
Download VAST dataset from https://github.com/RIVeR-Lab/vast_data/

Checkpoints can be downloaded from -- https://drive.google.com/drive/folders/1OUrhzb3kesxPONCfVrQcIYcmYhSZ9V2l?usp=drive_link

Once the data folder is populated with dataset, execute

cd utils
python3 generate_csv_dms.py
python3 generate_csv_vast.py

Testing the scripts

Checkpoints are in checkpoints folder and can be used to visualize the results.

python3 test.py #runs all the models and plots the results

Finetuning / Training

python3 train.py --model [endtoend | unet_reg | unet_seg | srcnn] --epochs num_epochs --batch_size batch_size

Example

python3 train.py --model endtoend --epochs 10 --batch_size 100

Note due to preprocessing in VAST dataset it may be possible that some datapoints are dropped, it is highly recommended to use a larger batch size (greater than 100).

Citation


If you find this code useful, please consider citing our paper:

@misc{prajapati2024predictivemappingspectralsignatures,
      title={Predictive Mapping of Spectral Signatures from RGB Imagery for Off-Road Terrain Analysis}, 
      author={Sarvesh Prajapati and Ananya Trivedi and Bruce Maxwell and Taskin Padir},
      year={2024},
      eprint={2405.04979},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2405.04979}, 
}

Thanks to

Releases

No releases published

Packages

No packages published

Languages