Skip to content

Commit

Permalink
finished pass through documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
marcoct committed May 18, 2021
1 parent 3fc5a0e commit c045614
Show file tree
Hide file tree
Showing 12 changed files with 228 additions and 157 deletions.
26 changes: 13 additions & 13 deletions docs/src/ref/learning.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,10 +51,10 @@ end
```

Let's suppose we are training the generative model.
The first step is to initialize the values of the trainable parameters, which for generative functions constructed using the built-in modeling languages, we do with [`init_param!`](@ref):
The first step is to initialize the values of the trainable parameters, which for generative functions constructed using the built-in modeling languages, we do with [`init_parameter!`](@ref):
```julia
init_param!(model, :a, 0.)
init_param!(model, :b, 0.)
init_parameter!((model, :a), 0.0)
init_parameter!((model, :b), 0.0)
```
Each trace in the collection contains the observed data from an independent draw from our model.
We can populate each trace with its observed data using [`generate`](@ref):
Expand All @@ -76,24 +76,24 @@ for trace in traces
accumulate_param_gradients!(trace)
end
```
Finally, we can construct and gradient-based update with [`ParamUpdate`](@ref) and apply it with [`apply!`](@ref).
Finally, we can construct and gradient-based update with [`init_optimizer`](@ref) and apply it with [`apply_update!`](@ref).
We can put this all together into a function:
```julia
function train_model(data::Vector{ChoiceMap})
init_param!(model, :theta, 0.1)
init_parameter!((model, :theta), 0.1)
traces = []
for observations in data
trace, = generate(model, model_args, observations)
push!(traces, trace)
end
update = ParamUpdate(FixedStepSizeGradientDescent(0.001), model)
optimizer = init_optimizer(FixedStepGradientDescent(0.001), model)
for iter=1:max_iter
objective = sum([get_score(trace) for trace in traces])
println("objective: $objective")
for trace in traces
accumulate_param_gradients!(trace)
end
apply!(update)
apply_update!(optimizer)
end
end
```
Expand Down Expand Up @@ -139,14 +139,14 @@ There are many variants possible, based on which Monte Carlo inference algorithm
For example:
```julia
function train_model(data::Vector{ChoiceMap})
init_param!(model, :theta, 0.1)
update = ParamUpdate(FixedStepSizeGradientDescent(0.001), model)
init_parameter!((model, :theta), 0.1)
optimizer = init_optimizer(FixedStepGradientDescent(0.001), model)
for iter=1:max_iter
traces = do_monte_carlo_inference(data)
for trace in traces
accumulate_param_gradients!(trace)
end
apply!(update)
apply_update!(optimizer)
end
end

Expand All @@ -160,14 +160,14 @@ end
Note that it is also possible to use a weighted collection of traces directly without resampling:
```julia
function train_model(data::Vector{ChoiceMap})
init_param!(model, :theta, 0.1)
update = ParamUpdate(FixedStepSizeGradientDescent(0.001), model)
init_parameter!((model, :theta), 0.1)
optimizer = init_optimizer(FixedStepGradientDescent(0.001), model)
for iter=1:max_iter
traces, weights = do_monte_carlo_inference_with_weights(data)
for (trace, weight) in zip(traces, weights)
accumulate_param_gradients!(trace, nothing, weight)
end
apply!(update)
apply_update!(optimizer)
end
end
```
Expand Down
24 changes: 12 additions & 12 deletions docs/src/ref/modeling.md
Original file line number Diff line number Diff line change
Expand Up @@ -254,6 +254,7 @@ See [Generative Function Interface](@ref) for more information about traces.

A `@gen` function may begin with an optional block of *trainable parameter declarations*.
The block consists of a sequence of statements, beginning with `@param`, that declare the name and Julia type for each trainable parameter.
The Julia type must be either a subtype of `Real` or subtype of `Array{<:Real}`.
The function below has a single trainable parameter `theta` with type `Float64`:
```julia
@gen function foo(prob::Float64)
Expand All @@ -264,23 +265,22 @@ The function below has a single trainable parameter `theta` with type `Float64`:
end
```
Trainable parameters obey the same scoping rules as Julia local variables defined at the beginning of the function body.
The value of a trainable parameter is undefined until it is initialized using [`init_param!`](@ref).
After the definition of the generative function, you must register all of the parameters used by the generative function using [`register_parameters!`](@ref) (this is not required if you instead use the [Static Modeling Language](@ref)):
```julia
register_parameters!(foo, [:theta])
```
The value of a trainable parameter is undefined until it is initialized using [`init_parameter!`](@ref):
```julia
init_parameter!((foo, :theta), 0.0)
```
In addition to the current value, each trainable parameter has a current **gradient accumulator** value.
The gradient accumulator value has the same shape (e.g. array dimension) as the parameter value.
It is initialized to all zeros, and is incremented by [`accumulate_param_gradients!`](@ref).

The following methods are exported for the trainable parameters of `@gen` functions:
It is initialized to all zeros, and is incremented by calling [`accumulate_param_gradients!`](@ref) on a trace.
Additional functions for retrieving and manipulating the values of trainable parameters and their gradient accumulators are described in [Optimizing Trainable Parameters](@ref).
```@docs
init_param!
get_param
get_param_grad
set_param!
zero_param_grad!
register_parameters!
```

Trainable parameters are designed to be trained using gradient-based methods.
This is discussed in the next section.

## Differentiable programming

Given a trace of a `@gen` function, Gen supports automatic differentiation of the log probability (density) of all of the random choices made in the trace with respect to the following types of inputs:
Expand Down
85 changes: 67 additions & 18 deletions docs/src/ref/parameter_optimization.md
Original file line number Diff line number Diff line change
@@ -1,33 +1,82 @@
# Optimizing Trainable Parameters

Trainable parameters of generative functions are initialized differently depending on the type of generative function.
Trainable parameters of the built-in modeling language are initialized with [`init_param!`](@ref).
## Parameter stores

Gradient-based optimization of the trainable parameters of generative functions is based on interleaving two steps:
Multiple traces of a generative function typically reference the same trainable parameters of the generative function, which are stored outside of the trace in a **parameter store**.
Different types of generative functions may use different types of parameter stores.
For example, the [`JuliaParameterStore`](@ref) (discussed below) stores parameters as Julia values in the memory of the Julia runtime process.
Other types of parameter stores may store parameters in GPU memory, in a filesystem, or even remotely.

- Incrementing gradient accumulators for trainable parameters by calling [`accumulate_param_gradients!`](@ref) on one or more traces.
When generating a trace of a generative function with [`simulate`](@ref) or [`generate`](@ref), we may pass in an optional **parameter context**, which is a `Dict` that provides information about which parameter store(s) in which to look up the value of parameters.
A generative function obtains a reference to a specific type of parameter store by looking up its key in the parameter context.

- Updating the value of trainable parameters and resetting the gradient accumulators to zero, by calling [`apply!`](@ref) on a *parameter update*, as described below.
If you are just learning Gen, and are only using the built-in modeling language to write generative functions, you can ignore this complexity, because there is a [`default_julia_parameter_store`](@ref) and a default parameter context [`default_parameter_context`](@ref) that points to this default Julia parameter store that will be used if a parameter context is not provided in the call to `simulate` and `generate`.
```@docs
default_parameter_context
default_julia_parameter_store
```

## Julia parameter store

Parameters declared using the `@param` keyword in the built-in modeling language are stored in a type of parameter store called a [`JuliaParameterStore`](@ref).
A generative function can obtain a reference to a `JuliaParameterStore` by looking up the key [`JULIA_PARAMETER_STORE_KEY`](@ref) in a parameter context.
This is how the built-in modeling language implementation finds the parameter stores to use for `@param`-declared parameters.
Note that if you are defining your own [custom generative functions](@ref #Custom-generative-functions), you can also use a [`JuliaParameterStore`](@ref) (including the same parameter store used to store parameters of built-in modeling language generative functions) to store and optimize your trainable parameters.

## Parameter update
Different types of parameter stores provide different APIs for reading, writing, and updating the values of parameters and gradient accumulators for parameters.
The `JuliaParameterStore` API is given below.
The API uses tuples of the form `(gen_fn::GenerativeFunction, name::Symbol)` to identify parameters.
(Note that most user learning code only needs to use [`init_parameter!`](@ref), as the other API functions are called by [Optimizers](@ref) which are discussed below.)

A *parameter update* reads from the gradient accumulators for certain trainable parameters, updates the values of those parameters, and resets the gradient accumulators to zero.
A paramter update is constructed by combining an *update configuration* with the set of trainable parameters to which the update should be applied:
```@docs
ParamUpdate
JuliaParameterStore
init_parameter!
increment_gradient!
reset_gradient!
get_parameter_value
get_gradient
JULIA_PARAMETER_STORE_KEY
```
The set of possible update configurations is described in [Update configurations](@ref).
An update is applied with:

### Multi-threaded gradient accumulation

Note that the [`increment_gradient!`](@ref) call is thread-safe, so that multiple threads can concurrently increment the gradient for the same parameters. This is helpful for parallelizing gradient computation for a batch of traces within stochastic gradient descent learning algorithms.

## Optimizers

Gradient-based optimization typically involves iterating between two steps:
(i) computing gradients or estimates of gradients with respect to parameters, and
(ii) updating the value of the parameters based on the gradient estimates according to some mathematical rule.
Sometimes the optimization algorithm also has its own state that is separate from the value of the parameters and the gradient estimates.
Gradient-based optimization algorithms in Gen are implemented by **optimizers**.
Each type of parameter store provides implementations of optimizers for standard mathematical update rules.

The mathematical rules are defined in **optimizer configuration** objects.
The currently supported optimizer configurations are:
```@docs
apply!
FixedStepGradientDescent
DecayStepGradientDescent
```

The most common way to construct an optimizer is via:
```julia
optimizer = init_optimizer(conf, gen_fn)
```
which returns an optimizer that applies the mathematical rule defined by `conf` to all parameters used by `gen_fn` (even when the generative function uses parameters that are housed in multiple parameter stores).
You can also pass a parameter context keyword argument to customize the parameter store(s) that the optimizer should use.
Then, after accumulating gradients with [`accumulate_param_gradients!`](@ref), you can apply the update with:
```julia
apply_update!(optimizer)
```

The `init_optimizer` method described above constructs an optimizer that actually invokes multiple optimizers, one for each parameter store.
To add support to a parameter store type for a new optimizer configuration type, you must implement the per-parameter-store optimizer methods:

## Update configurations
- `init_optimizer(conf, parameter_ids, store)`, which takes in an optimizer configuration object, and list of parameter IDs, and the parameter store in which to apply the updates, and returns an optimizer thata mutates the given parameter store.

- `apply_update!(optimizer)`, which takes in an a single argument (the optimizer) and applies its update rule, which mutates the value of the parameters in its parameter store (and typically also resets the values of the gradient accumulators to zero).

Gen has built-in support for the following types of update configurations.
```@docs
FixedStepGradientDescent
GradientDescent
ADAM
init_optimizer
apply_update!
```
For adding new types of update configurations, see [Optimizing Trainable Parameters (Internal)](@ref optimizing-internal).
Empty file removed src/builtin_optimization.jl
Empty file.
11 changes: 6 additions & 5 deletions src/dynamic/dynamic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,13 +56,14 @@ end
"""
register_parameters!(gen_fn::DynamicDSLFunction, parameters)
Register the altrainable parameters that are used by a DML generative function.
Register the trainable parameters that used by a DML generative function.
This includes all parameters used within any calls made by the generative function.
This includes all parameters used within any calls made by the generative function, and includes any parameters that may be used by any possible trace (stochastic control flow may cause a parameter to be used by one trace but not another).
There are two variants:
# TODO document the variants
The second argument is either a `Vector` or a `Function` that takes a parameter context and returns a `Dict` that maps parameter stores to `Vector`s of parameter IDs.
When the second argument is a `Vector`, each element is either a `Symbol` that is the name of a parameter declared in the body of `gen_fn` using `@param`, or is a tuple `(other_gen_fn::GenerativeFunction, name::Symbol)` where `@param <name>` was declared in the body of `other_gen_fn`.
The `Function` input is used when `gen_fn` uses parameters that come from more than one parameter store, including parameters that are housed in parameter stores that are not `JuliaParameterStore`s (e.g. if `gen_fn` invokes a generative function that executes in another non-Julia runtime).
See [Optimizing Trainable Parameters](@ref) for details on parameter contexts, and parameter stores.
"""
function register_parameters!(gen_fn::DynamicDSLFunction, parameters)
gen_fn.parameters = parameters
Expand Down
25 changes: 4 additions & 21 deletions src/gen_fn_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ Return an iterable over the trainable parameters of the generative function.
get_params(::GenerativeFunction) = ()

"""
trace = simulate(gen_fn, args, parameter_context=Dict())
trace = simulate(gen_fn, args, parameter_context=default_parameter_context)
Execute the generative function and return the trace.
Expand All @@ -175,14 +175,10 @@ function simulate(::GenerativeFunction, ::Tuple, parameter_context::Dict)
error("Not implemented")
end

function simulate(gen_fn::GenerativeFunction, args::Tuple)
return simulate(gen_fn, args, Dict())
end

"""
(trace::U, weight) = generate(
gen_fn::GenerativeFunction{T,U}, args::Tuple,
constraints=EmptyChoiceMap(), parameter_context=Dict())
constraints=EmptyChoiceMap(), parameter_context=default_parameter_context)
Return a trace of a generative function that is consistent with the given
constraints on the random choices, if any.
Expand Down Expand Up @@ -212,14 +208,6 @@ function generate(::GenerativeFunction, ::Tuple, ::ChoiceMap, parameter_context:
error("Not implemented")
end

function generate(gen_fn::GenerativeFunction, args::Tuple, choices::ChoiceMap)
return generate(gen_fn, args, choices, Dict())
end

function generate(gen_fn::GenerativeFunction, args::Tuple)
return generate(gen_fn, args, EmptyChoiceMap(), Dict())
end


"""
weight = project(trace::U, selection::Selection)
Expand All @@ -241,7 +229,7 @@ end

"""
(choices, weight, retval) = propose(
gen_fn::GenerativeFunction, args::Tuple, parameter_context=Dict())
gen_fn::GenerativeFunction, args::Tuple, parameter_context=default_parameter_context)
Sample an assignment and compute the probability of proposing that assignment.
Expand All @@ -258,12 +246,11 @@ function propose(gen_fn::GenerativeFunction, args::Tuple, parameter_context::Dic
return (get_choices(trace), weight, get_retval(trace))
end

propose(gen_fn::GenerativeFunction, args::Tuple) = propose(gen_fn, args, Dict())

"""
(weight, retval) = assess(
gen_fn::GenerativeFunction, args::Tuple, choices::ChoiceMap,
parameter_context=Dict())
parameter_context=default_parameter_context)
Return the probability of proposing an assignment
Expand All @@ -281,10 +268,6 @@ function assess(
return (weight, get_retval(trace))
end

function assess(gen_fn::GenerativeFunction, args::Tuple, choices::ChoiceMap)
return assess(gen_fn, args, choices, Dict())
end


"""
(new_trace, weight, retdiff, discard) = update(
Expand Down
11 changes: 6 additions & 5 deletions src/inference/train.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
"""
train!(gen_fn::GenerativeFunction, data_generator::Function,
optimizer::CompositeOptimizer,
num_epoch, epoch_size, num_minibatch, minibatch_size; verbose::Bool=false)
optimizer;
num_epoch=1, epoch_size=1, num_minibatch=1, minibatch_size=1;
verbose::Bool=false)
Train the given generative function to maximize the expected conditional log
probability (density) that `gen_fn` generates the assignment `constraints`
Expand All @@ -22,7 +23,7 @@ taken under the marginal distribution on `inputs` determined by the data
generator.
"""
function train!(gen_fn::GenerativeFunction, data_generator::Function,
optimizer::CompositeOptimizer;
optimizer;
num_epoch=1, epoch_size=1, num_minibatch=1, minibatch_size=1,
evaluation_size=epoch_size, verbose=false,
callback=(epoch, minibatch, minibatch_objective) -> nothing)
Expand Down Expand Up @@ -101,7 +102,7 @@ function lecture!(
q_args = get_q_args(p_trace)
q_trace, score = generate(q, q_args, get_choices(p_trace)) # NOTE: q won't make all the random choices that p does
accumulate_param_gradients!(q_trace)
score
return score
end

"""
Expand All @@ -128,7 +129,7 @@ function lecture_batched!(
q_args = get_q_args(p_traces)
q_trace, score = generate(q_batched, q_args, constraints) # NOTE: q won't make all the random choices that p does
accumulate_param_gradients!(q_trace)
score / batch_size
return score / batch_size
end

export train!
Expand Down
Loading

0 comments on commit c045614

Please sign in to comment.