Skip to content

PAR models package for periodic time series and scenarios generation

License

Notifications You must be signed in to change notification settings

psrenergy/PeriodicAutoregressive.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PeriodicAutoregressive.jl

CI codecov

Introduction

This repository provides an implementation of Periodic Autoregressive (PAR) models, along with simple variations, designed for time series analysis in periodic data. PAR models are valuable tools in generating synthetic energy and flow scenarios, particularly in energy operation planning.

The full methodology behind PAR models is detailed in the article by Maceira et al. (2006), Geração de Cenários Sintéticos de Energia e Vazão para o Planejamento da Operação Energética, published in Cadernos do IME: Série Estatística. Access the original article in Portuguese here.

Getting Started

Installation

julia> ] add PeriodicAutoregressive

Example: PAR(p) Model

using PeriodicAutoregressive

funil_grande = include(joinpath(pkgdir(PeriodicAutoregressive), "test", "data", "funil_grande.jl"))
batalha = include(joinpath(pkgdir(PeriodicAutoregressive), "test", "data", "batalha.jl"))

stages = 12
p_lim = 6

par_1 = PARp(funil_grande, stages, p_lim; information_criteria = "aic");
par_2 = PARp(batalha, stages, p_lim; information_criteria = "aicc");

fit_par!(par_1);
fit_par!(par_2);

steps_ahead = 100
number_of_scenarios = 1000

scenarios = simulate_par([par_1; par_2], steps_ahead, number_of_scenarios)

About

PAR models package for periodic time series and scenarios generation

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •