Skip to content

Commit

Permalink
Split MultiVector.__init__ into three static methods
Browse files Browse the repository at this point in the history
This makes the API a little bit easier to explain, and removes the opportunity for passing orthogonal options at the same time.
  • Loading branch information
eric-wieser committed Mar 25, 2020
1 parent 019a426 commit aca0818
Show file tree
Hide file tree
Showing 4 changed files with 118 additions and 68 deletions.
6 changes: 3 additions & 3 deletions clifford/_blademap.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,8 @@ def __init__(self, blades_map, map_scalars=True):

if map_scalars:
# make scalars in each algebra map
s1 = self.b1[0]._newMV(dtype=int)+1
s2 = self.b2[0]._newMV(dtype=int)+1
s1 = self.b1[0].of_zero(dtype=int)+1
s2 = self.b2[0].of_zero(dtype=int)+1
self.blades_map = [(s1, s2)] + self.blades_map

@property
Expand Down Expand Up @@ -60,7 +60,7 @@ def __call__(self, A):
raise ValueError('A doesnt belong to either Algebra in this Map')

# create empty MV, and map values
B = to_b[0]._newMV(dtype=int)
B = to_b[0].of_zero(dtype=int)
for from_obj, to_obj in zip(from_b, to_b):
B += (sum(A.value*from_obj.value)*to_obj)
return B
4 changes: 1 addition & 3 deletions clifford/_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,9 +484,7 @@ def __eq__(self, other):

def parse_multivector(self, mv_string: str) -> MultiVector:
""" Parses a multivector string into a MultiVector object """
# guarded import in case the parse become heavier weight
from ._parser import parse_multivector
return parse_multivector(self, mv_string)
return MultiVector.from_string(self, mv_string)

def _genTables(self):
"Generate the multiplication tables."
Expand Down
172 changes: 112 additions & 60 deletions clifford/_multivector.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import numbers
import math
import types
from typing import List, Set, Tuple

import numpy as np
Expand All @@ -9,25 +10,23 @@
from . import _settings


class MultiVector(object):
"""An element of the algebra
Parameters
-------------
layout: instance of :class:`clifford.Layout`
The layout of the algebra
value : sequence of length ``layout.gaDims``
The coefficients of the base blades
class _layout_binding_classmethod(classmethod):
"""
Helper to pass the `layout` argument automatically to class methods when
called on instances.
"""
def __get__(self, instance, owner):
base = classmethod.__get__(self, instance, owner)
if instance is not None:
# methodtype binds the next unbound argument,
return types.MethodType(base, instance.layout)
else:
return base

dtype : numpy.dtype
The datatype to use for the multivector, if no
value was passed.

.. versionadded:: 1.1.0
class MultiVector(object):
"""An element of the algebra
Notes
------
The following operators are overloaded:
* ``A * B`` : geometric product
Expand All @@ -40,25 +39,86 @@ class MultiVector(object):
"""
__array_priority__ = 100

def __init__(self, layout, value=None, string=None, *, dtype: np.dtype = np.float64) -> None:
"""Constructor."""
@_layout_binding_classmethod
def of_zero(cls, layout, *, dtype=np.float64):
""" Construct a multivector initialized to zero with the specified dtype.
Can be called either as ``MultiVector.of_zero(layout, ...)``, or
reusing the layout of an existing multivector as ``some_mv.of_zero(...)``.
.. versionadded:: 1.3.0
Parameters
----------
layout: instance of :class:`clifford.Layout`
The layout of the algebra
dtype : numpy.dtype
The datatype to use for the multivector, if no
value was passed.
"""
self = super().__new__(cls)
self.layout = layout
self.value = np.zeros((self.layout.gaDims,), dtype=dtype)
return self

@_layout_binding_classmethod
def from_string(cls, layout, string):
""" Create a multivector from a string representation.
Can be called either as ``MultiVector.from_string(layout, ...)``, or
reusing the layout of an existing multivector as ``some_mv.from_string(...)``.
.. versionadded:: 1.3.0
Parameters
----------
layout: instance of :class:`clifford.Layout`
The layout of the algebra
string : str
The datatype to use for the multivector, if no
value was passed.
"""
# guarded import in case the parse become heavier weight
from ._parser import parse_multivector
return parse_multivector(layout, string, cls)

@_layout_binding_classmethod
def from_value(cls, layout, value):
""" Construct a multivector from an existing array, optionally copying.
Can be called either as ``MultiVector.from_value(layout, ...)``, or
reusing the layout of an existing multivector as ``some_mv.from_value(...)``.
.. versionadded:: 1.3.0
Parameters
----------
layout: instance of :class:`clifford.Layout`
The layout of the algebra.
value : sequence of length ``layout.gaDims``
The coefficients of the base blades.
"""
if value.shape != (layout.gaDims,):
raise ValueError(
"value must be a sequence of length %s" %
layout.gaDims)
self = super().__new__(cls)
self.layout = layout
self.value = np.array(value)
return self

if string is not None:
if value is not None:
raise TypeError("Cannot pass both string and value")
self.value = layout.parse_multivector(string).value

elif value is None:
self.value = np.zeros((self.layout.gaDims,), dtype=dtype)
def __new__(cls, layout, *args, **kwargs) -> 'MultiVector':
"""
Shorthand for :meth:`from_value`, :meth:`from_string`, or :meth:`of_zero`.
The appropriate function is chosen for the arguments given. """
if args or 'value' in kwargs:
return cls.from_value(layout, *args, **kwargs)
elif 'string' in kwargs:
return cls.from_string(layout, *args, **kwargs)
else:
self.value = np.array(value)
if self.value.shape != (self.layout.gaDims,):
raise ValueError(
"value must be a sequence of length %s" %
self.layout.gaDims)
return cls.of_zero(layout, *args, **kwargs)

def __array__(self) -> 'cf.MVArray':
# we are a scalar, and the only appropriate dtype is an object array
Expand All @@ -79,7 +139,7 @@ def _checkOther(self, other, coerce=True) -> Tuple['MultiVector', bool]:
elif isinstance(other, numbers.Number):
if coerce:
# numeric scalar
newOther = self._newMV(dtype=np.result_type(other))
newOther = self.of_zero(dtype=np.result_type(other))
newOther[()] = other
return newOther, True
else:
Expand All @@ -88,14 +148,6 @@ def _checkOther(self, other, coerce=True) -> Tuple['MultiVector', bool]:
else:
return other, False

def _newMV(self, newValue=None, *, dtype: np.dtype = None) -> 'MultiVector':
"""Returns a new MultiVector (or derived class instance).
"""
if newValue is None and dtype is None:
raise TypeError("Must specify either a type or value")

return self.__class__(self.layout, newValue, dtype=dtype)

# numeric special methods
# binary

Expand Down Expand Up @@ -139,7 +191,7 @@ def __mul__(self, other) -> 'MultiVector':

newValue = other * self.value

return self._newMV(newValue)
return self.from_value(newValue)

def __rmul__(self, other) -> 'MultiVector':
"""Right-hand geometric product, :math:`NM`"""
Expand All @@ -154,7 +206,7 @@ def __rmul__(self, other) -> 'MultiVector':
return other*obj
newValue = other*self.value

return self._newMV(newValue)
return self.from_value(newValue)

def __xor__(self, other) -> 'MultiVector':
r""" Outer product, :math:`M \wedge N` """
Expand All @@ -169,7 +221,7 @@ def __xor__(self, other) -> 'MultiVector':
return obj^other
newValue = other*self.value

return self._newMV(newValue)
return self.from_value(newValue)

def __rxor__(self, other) -> 'MultiVector':
r"""Right-hand outer product, :math:`N \wedge M` """
Expand All @@ -184,7 +236,7 @@ def __rxor__(self, other) -> 'MultiVector':
return other^obj
newValue = other * self.value

return self._newMV(newValue)
return self.from_value(newValue)

def __or__(self, other) -> 'MultiVector':
r""" Inner product, :math:`M \cdot N` """
Expand All @@ -198,9 +250,9 @@ def __or__(self, other) -> 'MultiVector':
obj = self.__array__()
return obj|other
# l * M = M * l = 0 for scalar l
return self._newMV(dtype=np.result_type(self.value.dtype, other))
return self.of_zero(dtype=np.result_type(self.value.dtype, other))

return self._newMV(newValue)
return self.from_value(newValue)

__ror__ = __or__

Expand All @@ -217,7 +269,7 @@ def __add__(self, other) -> 'MultiVector':
return obj + other
newValue = self.value + other.value

return self._newMV(newValue)
return self.from_value(newValue)

__radd__ = __add__

Expand All @@ -234,7 +286,7 @@ def __sub__(self, other) -> 'MultiVector':
return obj - other
newValue = self.value - other.value

return self._newMV(newValue)
return self.from_value(newValue)

def __rsub__(self, other) -> 'MultiVector':
"""Right-hand subtraction
Expand All @@ -249,7 +301,7 @@ def __rsub__(self, other) -> 'MultiVector':
return other - obj
newValue = other.value - self.value

return self._newMV(newValue)
return self.from_value(newValue)

def right_complement(self) -> 'MultiVector':
return self.layout.MultiVector(value=self.layout.right_complement_func(self.value))
Expand All @@ -269,7 +321,7 @@ def __truediv__(self, other) -> 'MultiVector':
obj = self.__array__()
return obj/other
newValue = self.value / other
return self._newMV(newValue)
return self.from_value(newValue)

def __rtruediv__(self, other) -> 'MultiVector':
"""Right-hand division, :math:`N M^{-1}`"""
Expand All @@ -293,9 +345,9 @@ def __pow__(self, other) -> 'MultiVector':
other = int(round(other))

if other == 0:
return self._newMV(dtype=self.value.dtype) + 1
return self.of_zero(dtype=self.value.dtype) + 1

newMV = self._newMV(np.array(self.value)) # copy
newMV = self.from_value(np.array(self.value)) # copy

for i in range(1, other):
newMV = newMV * self
Expand Down Expand Up @@ -326,7 +378,7 @@ def __neg__(self) -> 'MultiVector':

newValue = -self.value

return self._newMV(newValue)
return self.from_value(newValue)

def as_array(self) -> np.ndarray:
return self.value
Expand All @@ -336,7 +388,7 @@ def __pos__(self) -> 'MultiVector':

newValue = self.value + 0 # copy

return self._newMV(newValue)
return self.from_value(newValue)

def mag2(self) -> numbers.Number:
"""Magnitude (modulus) squared, :math:`{|M|}^2`
Expand Down Expand Up @@ -365,7 +417,7 @@ def adjoint(self) -> 'MultiVector':
Note that ``~(N * M) == ~M * ~N``.
"""
# The multivector created by reversing all multiplications
return self._newMV(self.layout.adjoint_func(self.value))
return self.from_value(self.layout.adjoint_func(self.value))

__invert__ = adjoint

Expand Down Expand Up @@ -459,7 +511,7 @@ def __call__(self, other, *others) -> 'MultiVector':

newValue = np.multiply(mask, self.value)

return self._newMV(newValue)
return self.from_value(newValue)

# fundamental special methods
def __str__(self) -> str:
Expand Down Expand Up @@ -600,7 +652,7 @@ def lc(self, other) -> 'MultiVector':

newValue = self.layout.lcmt_func(self.value, other.value)

return self._newMV(newValue)
return self.from_value(newValue)

@property
def pseudoScalar(self) -> 'MultiVector':
Expand Down Expand Up @@ -709,7 +761,7 @@ def leftLaInv(self) -> 'MultiVector':
"""Return left-inverse using a computational linear algebra method
proposed by Christian Perwass.
"""
return self._newMV(self.layout.inv_func(self.value))
return self.from_value(self.layout.inv_func(self.value))

def _pick_inv(self, fallback):
"""Internal helper to choose an appropriate inverse method.
Expand Down Expand Up @@ -795,7 +847,7 @@ def gradeInvol(self) -> 'MultiVector':

newValue = signs * self.value

return self._newMV(newValue)
return self.from_value(newValue)

@property
def even(self) -> 'MultiVector':
Expand Down Expand Up @@ -855,7 +907,7 @@ def factorise(self) -> Tuple[List['MultiVector'], numbers.Number]:
B_c = self/scale
for ind in B_max_factors[1:]:
# get the basis vector
ei = self._newMV(dtype=B_c.value.dtype)
ei = self.of_zero(dtype=B_c.value.dtype)
ei[(ind,)] = 1

fi = (ei.lc(B_c)*B_c.normalInv(check=False)).normal()
Expand Down Expand Up @@ -884,7 +936,7 @@ def basis(self) -> List['MultiVector']:
if self.layout.gradeList[i] == 1:
v = np.zeros((self.layout.gaDims,), dtype=float)
v[i] = 1.
wholeBasis.append(self._newMV(v))
wholeBasis.append(self.from_value(v))

thisBasis = [] # vector basis of this subspace

Expand Down Expand Up @@ -1004,4 +1056,4 @@ def astype(self, *args, **kwargs):
See `np.ndarray.astype` for argument descriptions.
"""
return self._newMV(self.value.astype(*args, **kwargs))
return self.from_value(self.value.astype(*args, **kwargs))
Loading

0 comments on commit aca0818

Please sign in to comment.