-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
KowerKoint
authored and
KowerKoint
committed
Nov 20, 2024
1 parent
1641b90
commit eecb99d
Showing
15 changed files
with
537 additions
and
84 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
#pragma once | ||
|
||
#include "gate.hpp" | ||
|
||
namespace scaluq { | ||
template <std::floating_point Fp> | ||
std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>& gate1, const Gate<Fp>& gate2); | ||
|
||
#ifdef SCALUQ_USE_NANOBIND | ||
namespace internal { | ||
void bind_gate_merge_gate_hpp(nb::module_& m) { | ||
m.def("merge_gate", | ||
&merge_gate<double>, | ||
"Merge two gates. return value is (merged gate, global phase)."); | ||
} | ||
} // namespace internal | ||
#endif | ||
} // namespace scaluq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
#include <scaluq/constant.hpp> | ||
#include <scaluq/gate/gate_factory.hpp> | ||
#include <scaluq/gate/merge_gate.hpp> | ||
#include <scaluq/util/utility.hpp> | ||
|
||
#include "../util/template.hpp" | ||
|
||
namespace scaluq { | ||
FLOAT(Fp) | ||
std::pair<Gate<Fp>, Fp> merge_gate_dense_matrix(const Gate<Fp>& gate1, const Gate<Fp>& gate2) { | ||
auto common_control_mask = gate1->control_qubit_mask() & gate2->control_qubit_mask(); | ||
auto merged_operand_mask = | ||
(gate1->operand_qubit_mask() | gate2->operand_qubit_mask()) & ~common_control_mask; | ||
auto merged_operand_vector = internal::mask_to_vector(merged_operand_mask); | ||
auto matrix1 = internal::get_expanded_matrix(gate1->get_matrix(), | ||
gate1->target_qubit_list(), | ||
gate1->control_qubit_mask() & ~common_control_mask, | ||
merged_operand_vector); | ||
auto matrix2 = internal::get_expanded_matrix(gate2->get_matrix(), | ||
gate2->target_qubit_list(), | ||
gate2->control_qubit_mask() & ~common_control_mask, | ||
merged_operand_vector); | ||
std::cerr << matrix1 << std::endl; | ||
std::cerr << matrix2 << std::endl; | ||
auto matrix = matrix2 * matrix1; | ||
std::cerr << matrix << std::endl; | ||
return {gate::DenseMatrix<Fp>( | ||
merged_operand_vector, matrix, internal::mask_to_vector(common_control_mask)), | ||
0.}; | ||
} | ||
|
||
FLOAT(Fp) | ||
std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>& gate1, const Gate<Fp>& gate2) { | ||
GateType gate_type1 = gate1.gate_type(); | ||
GateType gate_type2 = gate2.gate_type(); | ||
|
||
if (gate_type1 == GateType::Probablistic || gate_type2 == GateType::Probablistic) { | ||
throw std::runtime_error( | ||
"merge_gate(const Gate<Fp>&, const Gate<Fp>&): ProbablisticGate is not supported."); | ||
} | ||
|
||
if (gate_type1 == GateType::I) return {gate2, 0.}; | ||
if (gate_type2 == GateType::I) return {gate1, 0.}; | ||
|
||
auto gate1_control_mask = gate1->control_qubit_mask(); | ||
auto gate2_control_mask = gate2->control_qubit_mask(); | ||
|
||
if (gate_type1 == GateType::GlobalPhase && gate1_control_mask == 0) | ||
return {gate2, GlobalPhaseGate<Fp>(gate1)->phase()}; | ||
if (gate_type2 == GateType::GlobalPhase && gate2_control_mask == 0) | ||
return {gate1, GlobalPhaseGate<Fp>(gate2)->phase()}; | ||
|
||
if (gate1_control_mask != gate2_control_mask) return merge_gate_dense_matrix(gate1, gate2); | ||
auto control_list = internal::mask_to_vector(gate1_control_mask); | ||
|
||
// Special case: Zero qubit | ||
if (gate_type1 == GateType::GlobalPhase && gate_type2 == GateType::GlobalPhase) { | ||
return {gate::GlobalPhase<Fp>( | ||
GlobalPhaseGate<Fp>(gate1)->phase() + GlobalPhaseGate<Fp>(gate2)->phase(), | ||
control_list), | ||
0.}; | ||
} | ||
|
||
// Special case: Pauli | ||
auto get_pauli_id = [&](GateType gate_type) -> std::optional<std::uint64_t> { | ||
if (gate_type == GateType::I) return 0; | ||
if (gate_type == GateType::X) return 1; | ||
if (gate_type == GateType::Y) return 2; | ||
if (gate_type == GateType::Z) return 3; | ||
return std::nullopt; | ||
}; | ||
auto pauli_id1 = get_pauli_id(gate_type1); | ||
auto pauli_id2 = get_pauli_id(gate_type2); | ||
assert(!pauli_id1 || pauli_id1 != 0); | ||
assert(!pauli_id2 || pauli_id2 != 0); | ||
if (pauli_id1 && pauli_id2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
if (pauli_id1 == pauli_id2) return {gate::I<Fp>(), 0.}; | ||
if (pauli_id1 == 1) { | ||
if (pauli_id2 == 2) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Z<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 3) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Y<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
if (pauli_id1 == 2) { | ||
if (pauli_id2 == 3) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::X<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 1) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Z<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
if (pauli_id1 == 3) { | ||
if (pauli_id2 == 1) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Y<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 2) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::X<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
if ((pauli_id1 || gate1.gate_type() == GateType::Pauli) && | ||
(pauli_id2 || gate2.gate_type() == GateType::Pauli)) { | ||
auto pauli1 = gate_type1 == GateType::Pauli | ||
? PauliGate<Fp>(gate1)->pauli() | ||
: PauliOperator<Fp>(std::vector{gate1->target_qubit_list()[0]}, | ||
std::vector{pauli_id1.value()}); | ||
auto pauli2 = gate_type2 == GateType::Pauli | ||
? PauliGate<Fp>(gate2)->pauli() | ||
: PauliOperator<Fp>(std::vector{gate2->target_qubit_list()[0]}, | ||
std::vector{pauli_id2.value()}); | ||
return {gate::Pauli<Fp>(pauli2 * pauli1, control_list), 0.}; | ||
} | ||
|
||
constexpr Fp eps = 1e-12; | ||
|
||
// Special case: Phase | ||
auto get_oct_phase = [&](GateType gate_type) -> std::optional<std::uint64_t> { | ||
if (gate_type == GateType::I) return 0; | ||
if (gate_type == GateType::Z) return 4; | ||
if (gate_type == GateType::S) return 2; | ||
if (gate_type == GateType::Sdag) return 6; | ||
if (gate_type == GateType::T) return 1; | ||
if (gate_type == GateType::Tdag) return 7; | ||
return std::nullopt; | ||
}; | ||
auto oct_phase_gate = [&](std::uint64_t oct_phase, | ||
std::uint64_t target) -> std::optional<Gate<Fp>> { | ||
oct_phase &= 7; | ||
if (oct_phase == 0) return gate::I<Fp>(); | ||
if (oct_phase == 4) return gate::Z<Fp>(target, control_list); | ||
if (oct_phase == 2) return gate::S<Fp>(target, control_list); | ||
if (oct_phase == 6) return gate::Sdag<Fp>(target, control_list); | ||
if (oct_phase == 1) return gate::T<Fp>(target, control_list); | ||
if (oct_phase == 7) return gate::Tdag<Fp>(target, control_list); | ||
return std::nullopt; | ||
}; | ||
auto oct_phase1 = get_oct_phase(gate_type1); | ||
auto oct_phase2 = get_oct_phase(gate_type2); | ||
if (oct_phase1 && oct_phase2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
auto g = oct_phase_gate(oct_phase1.value() + oct_phase2.value(), target1); | ||
if (g) return {g.value(), 0.}; | ||
} | ||
} | ||
if ((oct_phase1 || gate_type1 == GateType::RZ || gate_type1 == GateType::U1) && | ||
(oct_phase2 || gate_type2 == GateType::RZ || gate_type2 == GateType::U1)) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
Fp phase1 = oct_phase1 ? oct_phase1.value() * Kokkos::numbers::pi / 4 | ||
: gate_type1 == GateType::RZ ? RZGate<Fp>(gate1)->angle() | ||
: U1Gate<Fp>(gate1)->lambda(); | ||
Fp global_phase1 = gate_type1 == GateType::RZ ? -RZGate<Fp>(gate1)->angle() / 2 : 0.; | ||
Fp phase2 = oct_phase2 ? oct_phase2.value() * Kokkos::numbers::pi / 4 | ||
: gate_type2 == GateType::RZ ? RZGate<Fp>(gate2)->angle() | ||
: U1Gate<Fp>(gate2)->lambda(); | ||
Fp global_phase2 = gate_type2 == GateType::RZ ? -RZGate<Fp>(gate2)->angle() / 2 : 0.; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::U1<Fp>(target1, phase1 + phase2, control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: RX | ||
auto get_rx_angle = [&](Gate<Fp> gate, GateType gate_type) -> std::optional<Fp> { | ||
if (gate_type == GateType::I) return 0.; | ||
if (gate_type == GateType::X) return Kokkos::numbers::pi; | ||
if (gate_type == GateType::SqrtX) return Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::SqrtXdag) return -Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::RX) return RXGate<Fp>(gate)->angle(); | ||
return std::nullopt; | ||
}; | ||
auto rx_param1 = get_rx_angle(gate1, gate_type1); | ||
auto rx_param2 = get_rx_angle(gate2, gate_type2); | ||
if (rx_param1 && rx_param2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
Fp global_phase1 = gate_type1 == GateType::RX ? 0. : rx_param1.value() / 2; | ||
Fp global_phase2 = gate_type2 == GateType::RX ? 0. : rx_param2.value() / 2; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (target1 == target2) { | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::RX<Fp>(target1, rx_param1.value() + rx_param2.value(), control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: RY | ||
auto get_ry_angle = [&](Gate<Fp> gate, GateType gate_type) -> std::optional<Fp> { | ||
if (gate_type == GateType::I) return 0.; | ||
if (gate_type == GateType::Y) return Kokkos::numbers::pi; | ||
if (gate_type == GateType::SqrtY) return Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::SqrtYdag) return -Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::RY) return RYGate<Fp>(gate)->angle(); | ||
return std::nullopt; | ||
}; | ||
auto ry_param1 = get_ry_angle(gate1, gate_type1); | ||
auto ry_param2 = get_ry_angle(gate2, gate_type2); | ||
if (ry_param1 && ry_param2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
Fp global_phase1 = gate_type1 == GateType::RY ? 0. : ry_param1.value() / 2; | ||
Fp global_phase2 = gate_type2 == GateType::RY ? 0. : ry_param2.value() / 2; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (target1 == target2) { | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::RY<Fp>(target1, ry_param1.value() + ry_param2.value(), control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: Swap duplication | ||
if (gate_type1 == gate_type2 && gate_type1 == GateType::Swap) { | ||
if (gate1->target_qubit_mask() == gate2->target_qubit_mask()) return {gate::I<Fp>(), 0.}; | ||
} | ||
|
||
// General case | ||
return merge_gate_dense_matrix(gate1, gate2); | ||
} | ||
#define FUNC_MACRO(Fp) \ | ||
template std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>&, const Gate<Fp>&); | ||
CALL_MACRO_FOR_FLOAT(FUNC_MACRO) | ||
#undef FUNC_MACRO | ||
} // namespace scaluq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.