-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
merge_gate for control/dense with new cmake #183
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
#pragma once | ||
|
||
#include "gate.hpp" | ||
|
||
namespace scaluq { | ||
template <std::floating_point Fp> | ||
std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>& gate1, const Gate<Fp>& gate2); | ||
|
||
#ifdef SCALUQ_USE_NANOBIND | ||
namespace internal { | ||
void bind_gate_merge_gate_hpp(nb::module_& m) { | ||
m.def("merge_gate", | ||
&merge_gate<double>, | ||
"Merge two gates. return value is (merged gate, global phase)."); | ||
} | ||
} // namespace internal | ||
#endif | ||
} // namespace scaluq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -267,7 +267,8 @@ FLOAT_DECLARE_CLASS(SqrtYGateImpl) | |
FLOAT(Fp) | ||
ComplexMatrix<Fp> SqrtYdagGateImpl<Fp>::get_matrix() const { | ||
internal::ComplexMatrix<Fp> mat(2, 2); | ||
mat << 0, StdComplex<Fp>(0, -1), StdComplex<Fp>(0, 1), 0; | ||
mat << StdComplex<Fp>(0.5, -0.5), StdComplex<Fp>(0.5, -0.5), StdComplex<Fp>(-0.5, 0.5), | ||
StdComplex<Fp>(0.5, -0.5); | ||
return mat; | ||
} | ||
FLOAT(Fp) | ||
|
@@ -328,7 +329,7 @@ FLOAT(Fp) | |
ComplexMatrix<Fp> RXGateImpl<Fp>::get_matrix() const { | ||
internal::ComplexMatrix<Fp> mat(2, 2); | ||
mat << std::cos(this->_angle / 2), StdComplex<Fp>(0, -std::sin(this->_angle / 2)), | ||
StdComplex<Fp>(0, std::sin(this->_angle / 2)), std::cos(this->_angle / 2); | ||
StdComplex<Fp>(0, -std::sin(this->_angle / 2)), std::cos(this->_angle / 2); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. #177 で移植ミスがあったようです |
||
return mat; | ||
} | ||
FLOAT(Fp) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
#include <scaluq/constant.hpp> | ||
#include <scaluq/gate/gate_factory.hpp> | ||
#include <scaluq/gate/merge_gate.hpp> | ||
#include <scaluq/util/utility.hpp> | ||
|
||
#include "../util/template.hpp" | ||
|
||
namespace scaluq { | ||
FLOAT(Fp) | ||
std::pair<Gate<Fp>, Fp> merge_gate_dense_matrix(const Gate<Fp>& gate1, const Gate<Fp>& gate2) { | ||
auto common_control_mask = gate1->control_qubit_mask() & gate2->control_qubit_mask(); | ||
auto merged_operand_mask = | ||
(gate1->operand_qubit_mask() | gate2->operand_qubit_mask()) & ~common_control_mask; | ||
auto merged_operand_vector = internal::mask_to_vector(merged_operand_mask); | ||
auto matrix1 = internal::get_expanded_matrix(gate1->get_matrix(), | ||
gate1->target_qubit_list(), | ||
gate1->control_qubit_mask() & ~common_control_mask, | ||
merged_operand_vector); | ||
auto matrix2 = internal::get_expanded_matrix(gate2->get_matrix(), | ||
gate2->target_qubit_list(), | ||
gate2->control_qubit_mask() & ~common_control_mask, | ||
merged_operand_vector); | ||
std::cerr << matrix1 << std::endl; | ||
std::cerr << matrix2 << std::endl; | ||
auto matrix = matrix2 * matrix1; | ||
std::cerr << matrix << std::endl; | ||
return {gate::DenseMatrix<Fp>( | ||
merged_operand_vector, matrix, internal::mask_to_vector(common_control_mask)), | ||
0.}; | ||
} | ||
|
||
FLOAT(Fp) | ||
std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>& gate1, const Gate<Fp>& gate2) { | ||
GateType gate_type1 = gate1.gate_type(); | ||
GateType gate_type2 = gate2.gate_type(); | ||
|
||
if (gate_type1 == GateType::Probablistic || gate_type2 == GateType::Probablistic) { | ||
throw std::runtime_error( | ||
"merge_gate(const Gate<Fp>&, const Gate<Fp>&): ProbablisticGate is not supported."); | ||
} | ||
|
||
if (gate_type1 == GateType::I) return {gate2, 0.}; | ||
if (gate_type2 == GateType::I) return {gate1, 0.}; | ||
|
||
auto gate1_control_mask = gate1->control_qubit_mask(); | ||
auto gate2_control_mask = gate2->control_qubit_mask(); | ||
|
||
if (gate_type1 == GateType::GlobalPhase && gate1_control_mask == 0) | ||
return {gate2, GlobalPhaseGate<Fp>(gate1)->phase()}; | ||
if (gate_type2 == GateType::GlobalPhase && gate2_control_mask == 0) | ||
return {gate1, GlobalPhaseGate<Fp>(gate2)->phase()}; | ||
|
||
if (gate1_control_mask != gate2_control_mask) return merge_gate_dense_matrix(gate1, gate2); | ||
auto control_list = internal::mask_to_vector(gate1_control_mask); | ||
|
||
// Special case: Zero qubit | ||
if (gate_type1 == GateType::GlobalPhase && gate_type2 == GateType::GlobalPhase) { | ||
return {gate::GlobalPhase<Fp>( | ||
GlobalPhaseGate<Fp>(gate1)->phase() + GlobalPhaseGate<Fp>(gate2)->phase(), | ||
control_list), | ||
0.}; | ||
} | ||
|
||
// Special case: Pauli | ||
auto get_pauli_id = [&](GateType gate_type) -> std::optional<std::uint64_t> { | ||
if (gate_type == GateType::I) return 0; | ||
if (gate_type == GateType::X) return 1; | ||
if (gate_type == GateType::Y) return 2; | ||
if (gate_type == GateType::Z) return 3; | ||
return std::nullopt; | ||
}; | ||
auto pauli_id1 = get_pauli_id(gate_type1); | ||
auto pauli_id2 = get_pauli_id(gate_type2); | ||
assert(!pauli_id1 || pauli_id1 != 0); | ||
assert(!pauli_id2 || pauli_id2 != 0); | ||
if (pauli_id1 && pauli_id2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
if (pauli_id1 == pauli_id2) return {gate::I<Fp>(), 0.}; | ||
if (pauli_id1 == 1) { | ||
if (pauli_id2 == 2) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Z<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 3) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Y<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
if (pauli_id1 == 2) { | ||
if (pauli_id2 == 3) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::X<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 1) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Z<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
if (pauli_id1 == 3) { | ||
if (pauli_id2 == 1) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::Y<Fp>(target1, control_list), -Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
if (pauli_id2 == 2) { | ||
if (gate1_control_mask == 0) { | ||
return {gate::X<Fp>(target1, control_list), Kokkos::numbers::pi / 2}; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
if ((pauli_id1 || gate1.gate_type() == GateType::Pauli) && | ||
(pauli_id2 || gate2.gate_type() == GateType::Pauli)) { | ||
auto pauli1 = gate_type1 == GateType::Pauli | ||
? PauliGate<Fp>(gate1)->pauli() | ||
: PauliOperator<Fp>(std::vector{gate1->target_qubit_list()[0]}, | ||
std::vector{pauli_id1.value()}); | ||
auto pauli2 = gate_type2 == GateType::Pauli | ||
? PauliGate<Fp>(gate2)->pauli() | ||
: PauliOperator<Fp>(std::vector{gate2->target_qubit_list()[0]}, | ||
std::vector{pauli_id2.value()}); | ||
return {gate::Pauli<Fp>(pauli2 * pauli1, control_list), 0.}; | ||
} | ||
|
||
constexpr Fp eps = 1e-12; | ||
|
||
// Special case: Phase | ||
auto get_oct_phase = [&](GateType gate_type) -> std::optional<std::uint64_t> { | ||
if (gate_type == GateType::I) return 0; | ||
if (gate_type == GateType::Z) return 4; | ||
if (gate_type == GateType::S) return 2; | ||
if (gate_type == GateType::Sdag) return 6; | ||
if (gate_type == GateType::T) return 1; | ||
if (gate_type == GateType::Tdag) return 7; | ||
return std::nullopt; | ||
}; | ||
auto oct_phase_gate = [&](std::uint64_t oct_phase, | ||
std::uint64_t target) -> std::optional<Gate<Fp>> { | ||
oct_phase &= 7; | ||
if (oct_phase == 0) return gate::I<Fp>(); | ||
if (oct_phase == 4) return gate::Z<Fp>(target, control_list); | ||
if (oct_phase == 2) return gate::S<Fp>(target, control_list); | ||
if (oct_phase == 6) return gate::Sdag<Fp>(target, control_list); | ||
if (oct_phase == 1) return gate::T<Fp>(target, control_list); | ||
if (oct_phase == 7) return gate::Tdag<Fp>(target, control_list); | ||
return std::nullopt; | ||
}; | ||
auto oct_phase1 = get_oct_phase(gate_type1); | ||
auto oct_phase2 = get_oct_phase(gate_type2); | ||
if (oct_phase1 && oct_phase2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
auto g = oct_phase_gate(oct_phase1.value() + oct_phase2.value(), target1); | ||
if (g) return {g.value(), 0.}; | ||
} | ||
} | ||
if ((oct_phase1 || gate_type1 == GateType::RZ || gate_type1 == GateType::U1) && | ||
(oct_phase2 || gate_type2 == GateType::RZ || gate_type2 == GateType::U1)) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
if (target1 == target2) { | ||
Fp phase1 = oct_phase1 ? oct_phase1.value() * Kokkos::numbers::pi / 4 | ||
: gate_type1 == GateType::RZ ? RZGate<Fp>(gate1)->angle() | ||
: U1Gate<Fp>(gate1)->lambda(); | ||
Fp global_phase1 = gate_type1 == GateType::RZ ? -RZGate<Fp>(gate1)->angle() / 2 : 0.; | ||
Fp phase2 = oct_phase2 ? oct_phase2.value() * Kokkos::numbers::pi / 4 | ||
: gate_type2 == GateType::RZ ? RZGate<Fp>(gate2)->angle() | ||
: U1Gate<Fp>(gate2)->lambda(); | ||
Fp global_phase2 = gate_type2 == GateType::RZ ? -RZGate<Fp>(gate2)->angle() / 2 : 0.; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::U1<Fp>(target1, phase1 + phase2, control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: RX | ||
auto get_rx_angle = [&](Gate<Fp> gate, GateType gate_type) -> std::optional<Fp> { | ||
if (gate_type == GateType::I) return 0.; | ||
if (gate_type == GateType::X) return Kokkos::numbers::pi; | ||
if (gate_type == GateType::SqrtX) return Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::SqrtXdag) return -Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::RX) return RXGate<Fp>(gate)->angle(); | ||
return std::nullopt; | ||
}; | ||
auto rx_param1 = get_rx_angle(gate1, gate_type1); | ||
auto rx_param2 = get_rx_angle(gate2, gate_type2); | ||
if (rx_param1 && rx_param2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
Fp global_phase1 = gate_type1 == GateType::RX ? 0. : rx_param1.value() / 2; | ||
Fp global_phase2 = gate_type2 == GateType::RX ? 0. : rx_param2.value() / 2; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (target1 == target2) { | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::RX<Fp>(target1, rx_param1.value() + rx_param2.value(), control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: RY | ||
auto get_ry_angle = [&](Gate<Fp> gate, GateType gate_type) -> std::optional<Fp> { | ||
if (gate_type == GateType::I) return 0.; | ||
if (gate_type == GateType::Y) return Kokkos::numbers::pi; | ||
if (gate_type == GateType::SqrtY) return Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::SqrtYdag) return -Kokkos::numbers::pi / 2; | ||
if (gate_type == GateType::RY) return RYGate<Fp>(gate)->angle(); | ||
return std::nullopt; | ||
}; | ||
auto ry_param1 = get_ry_angle(gate1, gate_type1); | ||
auto ry_param2 = get_ry_angle(gate2, gate_type2); | ||
if (ry_param1 && ry_param2) { | ||
std::uint64_t target1 = gate1->target_qubit_list()[0]; | ||
std::uint64_t target2 = gate2->target_qubit_list()[0]; | ||
Fp global_phase1 = gate_type1 == GateType::RY ? 0. : ry_param1.value() / 2; | ||
Fp global_phase2 = gate_type2 == GateType::RY ? 0. : ry_param2.value() / 2; | ||
Fp global_phase = global_phase1 + global_phase2; | ||
if (target1 == target2) { | ||
if (std::abs(global_phase) < eps) { | ||
return {gate::RY<Fp>(target1, ry_param1.value() + ry_param2.value(), control_list), | ||
global_phase1 + global_phase2}; | ||
} | ||
} | ||
} | ||
|
||
// Special case: Swap duplication | ||
if (gate_type1 == gate_type2 && gate_type1 == GateType::Swap) { | ||
if (gate1->target_qubit_mask() == gate2->target_qubit_mask()) return {gate::I<Fp>(), 0.}; | ||
} | ||
|
||
// General case | ||
return merge_gate_dense_matrix(gate1, gate2); | ||
} | ||
#define FUNC_MACRO(Fp) \ | ||
template std::pair<Gate<Fp>, Fp> merge_gate(const Gate<Fp>&, const Gate<Fp>&); | ||
CALL_MACRO_FOR_FLOAT(FUNC_MACRO) | ||
#undef FUNC_MACRO | ||
} // namespace scaluq |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
#182 の時に間違って貼り付けてしまったようです…