Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parity #74

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tutorials-v5/heom/heom-1a-spin-bath-model-basic.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ jupyter:
extension: .md
format_name: markdown
format_version: '1.3'
jupytext_version: 1.14.5
jupytext_version: 1.16.1
kernelspec:
display_name: Python 3 (ipykernel)
language: python
Expand Down
54 changes: 27 additions & 27 deletions tutorials-v5/heom/heom-1b-spin-bath-model-very-strong-coupling.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ jupytext:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.5
jupytext_version: 1.16.1
kernelspec:
display_name: Python 3 (ipykernel)
language: python
Expand Down Expand Up @@ -81,7 +81,7 @@ Note that in the above, and the following, we set $\hbar = k_\mathrm{B} = 1$.

## Setup

```{code-cell} ipython3
```{code-cell}
import contextlib
import time

Expand Down Expand Up @@ -113,13 +113,13 @@ from qutip.solver.heom import (

Let's define some helper functions for calculating correlation function expansions, plotting results and timing how long operations take:

```{code-cell} ipython3
```{code-cell}
def cot(x):
""" Vectorized cotangent of x. """
return 1. / np.tan(x)
```

```{code-cell} ipython3
```{code-cell}
@contextlib.contextmanager
def timer(label):
""" Simple utility for timing functions:
Expand All @@ -133,7 +133,7 @@ def timer(label):
print(f"{label}: {end - start}")
```

```{code-cell} ipython3
```{code-cell}
# Solver options:

options = {
Expand All @@ -150,19 +150,19 @@ options = {

And let us set up the system Hamiltonian, bath and system measurement operators:

```{code-cell} ipython3
```{code-cell}
# Defining the system Hamiltonian
eps = .0 # Energy of the 2-level system.
Del = .2 # Tunnelling term
Hsys = 0.5 * eps * sigmaz() + 0.5 * Del * sigmax()
```

```{code-cell} ipython3
```{code-cell}
# Initial state of the system.
rho0 = basis(2, 0) * basis(2, 0).dag()
```

```{code-cell} ipython3
```{code-cell}
# System-bath coupling (Drude-Lorentz spectral density)
Q = sigmaz() # coupling operator

Expand All @@ -185,7 +185,7 @@ NC = 13
tlist = np.linspace(0, np.pi / Del, 600)
```

```{code-cell} ipython3
```{code-cell}
# Define some operators with which we will measure the system
# 1,1 element of density matrix - corresonding to groundstate
P11p = basis(2, 0) * basis(2, 0).dag()
Expand All @@ -198,7 +198,7 @@ P12p = basis(2, 0) * basis(2, 1).dag()

Let us briefly inspect the spectral density.

```{code-cell} ipython3
```{code-cell}
w = np.linspace(0, 5, 1000)
J = w * 2 * lam * gamma / ((gamma**2 + w**2))

Expand All @@ -211,7 +211,7 @@ axes.set_ylabel(r'J', fontsize=28);

## Simulation 1: Matsubara decomposition, not using Ishizaki-Tanimura terminator

```{code-cell} ipython3
```{code-cell}
with timer("RHS construction time"):
bath = DrudeLorentzBath(Q, lam=lam, gamma=gamma, T=T, Nk=Nk)
HEOMMats = HEOMSolver(Hsys, bath, NC, options=options)
Expand All @@ -222,7 +222,7 @@ with timer("ODE solver time"):

## Simulation 2: Matsubara decomposition (including terminator)

```{code-cell} ipython3
```{code-cell}
with timer("RHS construction time"):
bath = DrudeLorentzBath(Q, lam=lam, gamma=gamma, T=T, Nk=Nk)
_, terminator = bath.terminator()
Expand All @@ -233,7 +233,7 @@ with timer("ODE solver time"):
resultMatsT = HEOMMatsT.run(rho0, tlist)
```

```{code-cell} ipython3
```{code-cell}
# Plot the results
fig, axes = plt.subplots(1, 1, sharex=True, figsize=(8, 8))

Expand All @@ -256,7 +256,7 @@ axes.legend(loc=0, fontsize=12);

## Simulation 3: Pade decomposition

```{code-cell} ipython3
```{code-cell}
# First, compare Matsubara and Pade decompositions
matsBath = DrudeLorentzBath(Q, lam=lam, gamma=gamma, T=T, Nk=Nk)
padeBath = DrudeLorentzPadeBath(Q, lam=lam, gamma=gamma, T=T, Nk=Nk)
Expand Down Expand Up @@ -324,7 +324,7 @@ ax2.set_xlabel(r't', fontsize=28)
ax2.legend(loc=0, fontsize=12);
```

```{code-cell} ipython3
```{code-cell}
with timer("RHS construction time"):
bath = DrudeLorentzPadeBath(Q, lam=lam, gamma=gamma, T=T, Nk=Nk)
HEOMPade = HEOMSolver(Hsys, bath, NC, options=options)
Expand All @@ -333,7 +333,7 @@ with timer("ODE solver time"):
resultPade = HEOMPade.run(rho0, tlist)
```

```{code-cell} ipython3
```{code-cell}
# Plot the results
fig, axes = plt.subplots(figsize=(8, 8))

Expand All @@ -358,7 +358,7 @@ axes.legend(loc=0, fontsize=12);

## Simulation 4: Fitting approach

```{code-cell} ipython3
```{code-cell}
def wrapper_fit_func(x, N, args):
""" Fit function wrapper that unpacks its arguments. """
x = np.array(x)
Expand Down Expand Up @@ -410,7 +410,7 @@ def fitter(ans, tlist, k):
return (a, b)
```

```{code-cell} ipython3
```{code-cell}
# Fitting the real part of the correlation function:

# Correlation function values to fit:
Expand All @@ -425,7 +425,7 @@ with timer("Correlation (real) fitting time"):
poptR.append(fitter(corrRana, tlist_fit, i + 1))
```

```{code-cell} ipython3
```{code-cell}
plt.plot(tlist_fit, corrRana, label="Analytic")

for i in range(kR):
Expand All @@ -437,7 +437,7 @@ plt.legend()
plt.show()
```

```{code-cell} ipython3
```{code-cell}
# Set the exponential coefficients from the fit parameters

ckAR1 = poptR[-1][0]
Expand All @@ -452,7 +452,7 @@ ckAI = [lam * gamma * (-1.0) + 0j]
vkAI = [gamma + 0j]
```

```{code-cell} ipython3
```{code-cell}
with timer("RHS construction time"):
bath = BosonicBath(Q, ckAR, vkAR, ckAI, vkAI)
# We reduce NC slightly here for speed of execution because we retain
Expand All @@ -466,7 +466,7 @@ with timer("ODE solver time"):

## Simulation 5: Bloch-Redfield

```{code-cell} ipython3
```{code-cell}
DL = (
"2 * pi * 2.0 * {lam} / (pi * {gamma} * {beta}) if (w==0) "
"else 2 * pi * (2.0 * {lam} * {gamma} * w / (pi * (w**2 + {gamma}**2))) "
Expand All @@ -484,7 +484,7 @@ with timer("ODE solver time"):

Finally, let's plot all of our different results to see how they shape up against each other.

```{code-cell} ipython3
```{code-cell}
# Calculate expectation values in the bases:
P11_mats = np.real(expect(resultMats.states, P11p))
P11_matsT = np.real(expect(resultMatsT.states, P11p))
Expand All @@ -493,7 +493,7 @@ P11_fit = np.real(expect(resultFit.states, P11p))
P11_br = np.real(expect(resultBR.states, P11p))
```

```{code-cell} ipython3
```{code-cell}
rcParams = {
"axes.titlesize": 25,
"axes.labelsize": 30,
Expand All @@ -510,7 +510,7 @@ rcParams = {
}
```

```{code-cell} ipython3
```{code-cell}
fig, axes = plt.subplots(1, 1, sharex=True, figsize=(12, 7))

with plt.rc_context(rcParams):
Expand Down Expand Up @@ -550,15 +550,15 @@ with plt.rc_context(rcParams):

## About

```{code-cell} ipython3
```{code-cell}
qutip.about()
```

## Testing

This section can include some tests to verify that the expected outputs are generated within the notebook. We put this section at the end of the notebook, so it's not interfering with the user experience. Please, define the tests using assert, so that the cell execution fails if a wrong output is generated.

```{code-cell} ipython3
```{code-cell}
assert np.allclose(P11_matsT, P11_pade, rtol=1e-3)
assert np.allclose(P11_matsT, P11_fit, rtol=1e-3)
```
Loading