forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
…Crowd#451) * Add CODE_SWITCHING_IDENTIFICATION task * Implement dataloader * Update codeswitch_reddit.py fix column naming in source (using lowercase instead of capitalized)
- Loading branch information
1 parent
df5f813
commit 42778e5
Showing
2 changed files
with
209 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
209 changes: 209 additions & 0 deletions
209
seacrowd/sea_datasets/codeswitch_reddit/codeswitch_reddit.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import html | ||
import os | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """ | ||
@inproccedings{rabinovich-2019-codeswitchreddit, | ||
author = {Rabinovich, Ella and Sultani, Masih and Stevenson, Suzanne}, | ||
title = {CodeSwitch-Reddit: Exploration of Written Multilingual Discourse in Online Discussion Forums}, | ||
booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing}, | ||
publisher = {Association for Computational Linguistics}, | ||
year = {2019}, | ||
url = {https://aclanthology.org/D19-1484}, | ||
doi = {10.18653/v1/D19-1484}, | ||
pages = {4776--4786}, | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["eng", "ind", "tgl"] | ||
_DATASETNAME = "codeswitch_reddit" | ||
_DESCRIPTION = """ | ||
This corpus consists of monolingual English and multilingual (English and one other language) posts | ||
from country-specific subreddits, including r/indonesia, r/philippines and r/singapore for Southeast Asia. | ||
Posts were manually classified whether they contained code-switching or not. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/ellarabi/CodeSwitch-Reddit" | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_URL = "http://www.cs.toronto.edu/~ella/code-switch.reddit.tar.gz" | ||
|
||
_SUPPORTED_TASKS = [Tasks.CODE_SWITCHING_IDENTIFICATION, Tasks.SELF_SUPERVISED_PRETRAINING] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class CodeSwitchRedditDataset(datasets.GeneratorBasedBuilder): | ||
"""Dataset of monolingual English and multilingual comments from country-specific subreddits.""" | ||
|
||
SUBSETS = ["cs", "eng_monolingual"] | ||
INCLUDED_SUBREDDITS = ["indonesia", "Philippines", "singapore"] | ||
INCLUDED_LANGUAGES = {"English": "eng", "Indonesian": "ind", "Tagalog": "tgl"} | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset}_source", | ||
version=datasets.Version(_SOURCE_VERSION), | ||
description=f"{_DATASETNAME} source schema for {subset} subset", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_{subset}", | ||
) | ||
for subset in SUBSETS | ||
] + [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_eng_monolingual_seacrowd_ssp", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd ssp schema for eng_monolingual subset", | ||
schema="seacrowd_ssp", | ||
subset_id=f"{_DATASETNAME}_eng_monolingual", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_cs_seacrowd_text_multi", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd text multilabel schema for cs subset", | ||
schema="seacrowd_text_multi", | ||
subset_id=f"{_DATASETNAME}_cs", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_cs_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
if "cs" in self.config.subset_id: | ||
features = datasets.Features( | ||
{ | ||
"author": datasets.Value("string"), | ||
"subreddit": datasets.Value("string"), | ||
"country": datasets.Value("string"), | ||
"date": datasets.Value("int32"), | ||
"confidence": datasets.Value("int32"), | ||
"lang1": datasets.Value("string"), | ||
"lang2": datasets.Value("string"), | ||
"text": datasets.Value("string"), | ||
"id": datasets.Value("string"), | ||
"link_id": datasets.Value("string"), | ||
"parent_id": datasets.Value("string"), | ||
} | ||
) | ||
elif "eng_monolingual" in self.config.subset_id: | ||
features = datasets.Features( | ||
{ | ||
"author": datasets.Value("string"), | ||
"subreddit": datasets.Value("string"), | ||
"country": datasets.Value("string"), | ||
"date": datasets.Value("int32"), | ||
"confidence": datasets.Value("int32"), | ||
"lang": datasets.Value("string"), | ||
"text": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_ssp": | ||
features = schemas.ssp_features | ||
elif self.config.schema == "seacrowd_text_multi": | ||
features = schemas.text_multi_features(label_names=list(self.INCLUDED_LANGUAGES.values())) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
data_dir = dl_manager.download_and_extract(_URL) | ||
if "cs" in self.config.subset_id: | ||
filepath = os.path.join(data_dir, "cs_main_reddit_corpus.csv") | ||
elif "eng_monolingual" in self.config.subset_id: | ||
filepath = os.path.join(data_dir, "eng_monolingual_reddit_corpus.csv") | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": filepath, | ||
"split": "train", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
df = pd.read_csv(filepath, index_col=None, header="infer", encoding="utf-8") | ||
df = df[df["Subreddit"].isin(self.INCLUDED_SUBREDDITS)] | ||
|
||
if self.config.subset_id.split("_")[-1] == "cs": | ||
df = df[(df["Lang1"].isin(self.INCLUDED_LANGUAGES)) & (df["Lang2"].isin(self.INCLUDED_LANGUAGES))] | ||
df.reset_index(drop=True, inplace=True) | ||
|
||
for index, row in df.iterrows(): | ||
parsed_text = html.unescape(row["Text"]) | ||
if self.config.schema == "source": | ||
example = { | ||
"author": row["Author"], | ||
"subreddit": row["Subreddit"], | ||
"country": row["Country"], | ||
"date": row["Date"], | ||
"confidence": row["confidence"], | ||
"lang1": row["Lang1"], | ||
"lang2": row["Lang2"], | ||
"text": parsed_text, | ||
"id": row["id"], | ||
"link_id": row["link_id"], | ||
"parent_id": row["parent_id"], | ||
} | ||
|
||
elif self.config.schema == "seacrowd_text_multi": | ||
lang_one, lang_two = self.INCLUDED_LANGUAGES[row["Lang1"]], self.INCLUDED_LANGUAGES[row["Lang2"]] | ||
example = { | ||
"id": str(index), | ||
"text": parsed_text, | ||
"labels": list(sorted([lang_one, lang_two])), # Language order doesn't matter in original dataset; just arrange alphabetically for consistency | ||
} | ||
yield index, example | ||
|
||
else: | ||
df.reset_index(drop=True, inplace=True) | ||
for index, row in df.iterrows(): | ||
parsed_text = html.unescape(row["Text"]) | ||
if self.config.schema == "source": | ||
example = { | ||
"author": row["Author"], | ||
"subreddit": row["Subreddit"], | ||
"country": row["Country"], | ||
"date": row["Date"], | ||
"confidence": row["confidence"], | ||
"lang": row["Lang"], | ||
"text": parsed_text, | ||
} | ||
elif self.config.schema == "seacrowd_ssp": | ||
example = { | ||
"id": str(index), | ||
"text": parsed_text, | ||
} | ||
yield index, example |