-
Notifications
You must be signed in to change notification settings - Fork 917
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Improve performance of nvtext::tokenize_with_vocabulary for long stri…
…ngs (#14336) Improves `nvtext::tokenize_with_vocabulary` performance for long strings. Also adds additional tests and an nvbench benchmark. Authors: - David Wendt (https://github.com/davidwendt) Approvers: - Bradley Dice (https://github.com/bdice) - MithunR (https://github.com/mythrocks) URL: #14336
- Loading branch information
1 parent
56fe5db
commit f97e74f
Showing
4 changed files
with
375 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
/* | ||
* Copyright (c) 2023, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <benchmarks/common/generate_input.hpp> | ||
#include <benchmarks/fixture/benchmark_fixture.hpp> | ||
|
||
#include <cudf_test/column_wrapper.hpp> | ||
|
||
#include <cudf/reduction.hpp> | ||
#include <nvtext/tokenize.hpp> | ||
|
||
#include <cudf/scalar/scalar.hpp> | ||
#include <cudf/strings/char_types/char_types.hpp> | ||
#include <cudf/strings/strings_column_view.hpp> | ||
#include <cudf/utilities/default_stream.hpp> | ||
|
||
#include <nvbench/nvbench.cuh> | ||
|
||
static void bench_vocab_tokenize(nvbench::state& state) | ||
{ | ||
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); | ||
auto const row_width = static_cast<cudf::size_type>(state.get_int64("row_width")); | ||
|
||
if (static_cast<std::size_t>(num_rows) * static_cast<std::size_t>(row_width) >= | ||
static_cast<std::size_t>(std::numeric_limits<cudf::size_type>::max())) { | ||
state.skip("Skip benchmarks greater than size_type limit"); | ||
} | ||
|
||
auto const column = [num_rows, row_width] { | ||
data_profile const profile = data_profile_builder().no_validity().distribution( | ||
cudf::type_id::STRING, distribution_id::NORMAL, 0, row_width); | ||
auto const col = create_random_column(cudf::type_id::STRING, row_count{num_rows}, profile); | ||
return cudf::strings::filter_characters_of_type( | ||
cudf::strings_column_view(col->view()), | ||
cudf::strings::string_character_types::ALL_TYPES, | ||
cudf::string_scalar(" "), | ||
cudf::strings::string_character_types::ALPHANUM); | ||
}(); | ||
cudf::strings_column_view input(column->view()); | ||
|
||
auto const vocab_col = [] { | ||
data_profile const profile = data_profile_builder().no_validity().distribution( | ||
cudf::type_id::STRING, distribution_id::NORMAL, 0, 5); | ||
auto const col = create_random_column(cudf::type_id::STRING, row_count{100}, profile); | ||
return cudf::strings::filter_characters_of_type( | ||
cudf::strings_column_view(col->view()), | ||
cudf::strings::string_character_types::ALL_TYPES, | ||
cudf::string_scalar(""), | ||
cudf::strings::string_character_types::ALPHANUM); | ||
}(); | ||
auto const vocab = nvtext::load_vocabulary(cudf::strings_column_view(vocab_col->view())); | ||
|
||
auto token_count = [input] { | ||
auto const counts = nvtext::count_tokens(input); | ||
auto const agg = cudf::make_sum_aggregation<cudf::reduce_aggregation>(); | ||
auto const count = cudf::reduce(counts->view(), *agg, counts->type()); | ||
return static_cast<cudf::scalar_type_t<cudf::size_type>*>(count.get()) | ||
->value(cudf::get_default_stream()); | ||
}(); | ||
|
||
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); | ||
auto chars_size = input.chars_size() + cudf::strings_column_view(vocab_col->view()).chars_size(); | ||
state.add_global_memory_reads<nvbench::int8_t>(chars_size); | ||
state.add_global_memory_writes<nvbench::int32_t>(token_count); | ||
|
||
auto const delimiter = cudf::string_scalar(""); | ||
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { | ||
auto result = nvtext::tokenize_with_vocabulary(input, *vocab, delimiter); | ||
}); | ||
} | ||
|
||
NVBENCH_BENCH(bench_vocab_tokenize) | ||
.set_name("vocab_tokenize") | ||
.add_int64_axis("row_width", {32, 64, 128, 256, 512, 1024}) | ||
.add_int64_axis("num_rows", {262144, 524288, 1048576, 2097152, 4194304, 16777216}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.