-
Notifications
You must be signed in to change notification settings - Fork 917
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the new multithreaded parquet example
- Loading branch information
1 parent
124d3e3
commit ff2480b
Showing
4 changed files
with
306 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
/* | ||
* Copyright (c) 2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "common.hpp" | ||
|
||
#include <rmm/mr/device/statistics_resource_adaptor.hpp> | ||
|
||
#include <filesystem> | ||
|
||
/** | ||
* @file parquet_io_multithreaded.cpp | ||
* @brief Demonstrates usage of the libcudf APIs to read and write | ||
* parquet file format with different encodings and compression types | ||
* using multiple threads. | ||
* | ||
* The following encoding and compression ztypes are demonstrated: | ||
* Encoding Types: DEFAULT, DICTIONARY, PLAIN, DELTA_BINARY_PACKED, | ||
* DELTA_LENGTH_BYTE_ARRAY, DELTA_BYTE_ARRAY | ||
* | ||
* Compression Types: NONE, AUTO, SNAPPY, LZ4, ZSTD | ||
* | ||
*/ | ||
|
||
using table_t = std::unique_ptr<cudf::table>; | ||
|
||
struct read_fn { | ||
std::vector<std::string> const& input_files; | ||
std::vector<table_t>& tables; | ||
int const thread_id; | ||
int const thread_count; | ||
rmm::cuda_stream_view stream; | ||
|
||
void operator()() | ||
{ | ||
std::vector<table_t> tables_this_thread; | ||
for (auto curr_file_idx = thread_id; curr_file_idx < input_files.size(); | ||
curr_file_idx += thread_count) { | ||
auto const source_info = cudf::io::source_info(input_files[curr_file_idx]); | ||
auto builder = cudf::io::parquet_reader_options::builder(source_info); | ||
auto const options = builder.build(); | ||
tables_this_thread.push_back(cudf::io::read_parquet(options, stream).tbl); | ||
} | ||
|
||
// Concatenate all tables read by this thread. | ||
auto table = std::move(tables_this_thread[0]); | ||
std::for_each(tables_this_thread.begin() + 1, tables_this_thread.end(), [&](auto& tbl) { | ||
std::vector<cudf::table_view> const table_views{table->view(), tbl->view()}; | ||
table = cudf::concatenate(table_views, stream); | ||
}); | ||
|
||
// Done with this stream | ||
stream.synchronize_no_throw(); | ||
|
||
tables[thread_id] = std::move(table); | ||
} | ||
}; | ||
|
||
struct write_fn { | ||
std::string const& output_path; | ||
std::vector<table_t> const& tables; | ||
cudf::io::column_encoding const encoding; | ||
cudf::io::compression_type const compression; | ||
std::optional<cudf::io::statistics_freq> const stats_level; | ||
int const thread_id; | ||
|
||
void operator()() | ||
{ | ||
// write the data for inspection | ||
auto sink_info = | ||
cudf::io::sink_info(output_path + "/table_" + std::to_string(thread_id) + ".parquet"); | ||
auto builder = cudf::io::parquet_writer_options::builder(sink_info, tables[thread_id]->view()) | ||
.compression(compression) | ||
.stats_level(stats_level.value_or(cudf::io::statistics_freq::STATISTICS_NONE)); | ||
auto table_metadata = cudf::io::table_input_metadata{tables[thread_id]->view()}; | ||
|
||
std::for_each(table_metadata.column_metadata.begin(), | ||
table_metadata.column_metadata.end(), | ||
[=](auto& col_meta) { col_meta.set_encoding(encoding); }); | ||
|
||
builder.metadata(table_metadata); | ||
auto options = builder.build(); | ||
// Write parquet data | ||
cudf::io::write_parquet(options); | ||
} | ||
}; | ||
|
||
int main(int argc, char const** argv) | ||
{ | ||
std::string input_paths; | ||
std::string output_path; | ||
cudf::io::column_encoding encoding; | ||
cudf::io::compression_type compression; | ||
std::optional<cudf::io::statistics_freq> page_stats; | ||
int thread_count; | ||
|
||
switch (argc) { | ||
case 1: | ||
input_paths = "example.parquet"; | ||
output_path = "output.parquet"; | ||
encoding = get_encoding_type("DELTA_BINARY_PACKED"); | ||
compression = get_compression_type("ZSTD"); | ||
thread_count = 2; | ||
break; | ||
case 7: page_stats = get_page_size_stats(argv[6]); [[fallthrough]]; | ||
case 6: | ||
input_paths = std::string{argv[1]}; | ||
output_path = std::string{argv[2]}; | ||
encoding = get_encoding_type(argv[3]); | ||
compression = get_compression_type(argv[4]); | ||
thread_count = std::stoi(std::string(argv[5])); | ||
break; | ||
default: | ||
throw std::runtime_error( | ||
"Either provide all command-line arguments, or none to use defaults\n" | ||
"Use: parquet_io_multithreaded <comma delimited directories or parquet files>" | ||
"<output path> <encoding type> <compression type> <thread count> " | ||
"<write_page_stats? yes/no>\n"); | ||
} | ||
|
||
// Process and extract all input files | ||
auto const input_files = [&]() { | ||
std::vector<std::string> parquet_files; | ||
std::vector<std::string> delimited_paths = [&]() { | ||
std::vector<std::string> paths_list; | ||
std::stringstream stream{input_paths}; | ||
std::string path; | ||
// extract the delimited paths. | ||
while (std::getline(stream, path, char{','})) { | ||
paths_list.push_back(path); // Add each token to the vector | ||
} | ||
return paths_list; | ||
}(); | ||
|
||
std::for_each(delimited_paths.cbegin(), delimited_paths.cend(), [&](auto const& path_string) { | ||
std::filesystem::path path{path_string}; | ||
// If this is a parquet file, add it. | ||
if (std::filesystem::is_regular_file(path)) { | ||
parquet_files.push_back(path_string); | ||
} | ||
// If this is a directory, add all files at this path | ||
else if (std::filesystem::is_directory(path)) { | ||
for (auto const& file : std::filesystem::directory_iterator(path)) { | ||
if (std::filesystem::is_regular_file(file.path())) { | ||
parquet_files.push_back(file.path().string()); | ||
} | ||
} | ||
} else { | ||
throw std::runtime_error("Encountered an invalid input path\n"); | ||
} | ||
}); | ||
|
||
// Add parquet files from existing ones if less than thread_count | ||
for (size_t idx = 0, initial_size = parquet_files.size(); | ||
thread_count > static_cast<int>(parquet_files.size()); | ||
idx++) { | ||
parquet_files.push_back(parquet_files[idx % initial_size]); | ||
} | ||
|
||
return parquet_files; | ||
}(); | ||
|
||
// Exit early if nothing to do. | ||
if (not input_files.size()) { return 0; } | ||
|
||
// Check if output path is a directory. | ||
if (not std::filesystem::is_directory(std::filesystem::path{output_path})) { | ||
throw std::runtime_error("The provided output path is not a directory\n"); | ||
} | ||
|
||
auto const is_pool_used = true; | ||
auto resource = create_memory_resource(is_pool_used); | ||
auto default_stream = cudf::get_default_stream(); | ||
auto stream_pool = rmm::cuda_stream_pool(thread_count); | ||
auto stats_mr = | ||
rmm::mr::statistics_resource_adaptor<rmm::mr::device_memory_resource>(resource.get()); | ||
rmm::mr::set_current_device_resource(&stats_mr); | ||
|
||
// Lambda function to setup and launch multithread parquet read | ||
auto const read_parquet_multithreaded = [&]() { | ||
// Tables read by each thread | ||
std::vector<table_t> tables(thread_count); | ||
|
||
// Tasks to read each parquet file | ||
std::vector<read_fn> read_tasks; | ||
read_tasks.reserve(thread_count); | ||
std::for_each(thrust::make_counting_iterator(0), | ||
thrust::make_counting_iterator(thread_count), | ||
[&](auto tid) { | ||
read_tasks.emplace_back( | ||
read_fn{input_files, tables, tid, thread_count, stream_pool.get_stream()}); | ||
}); | ||
|
||
std::vector<std::thread> threads; | ||
threads.reserve(thread_count); | ||
for (auto& c : read_tasks) { | ||
threads.emplace_back(std::thread{c}); | ||
} | ||
for (auto& t : threads) { | ||
t.join(); | ||
} | ||
return tables; | ||
}; | ||
|
||
// Lambda function to setup and launch multithread parquet write | ||
auto const write_parquet_multithreaded = [&](std::vector<table_t> const& tables) { | ||
// Tasks to read each parquet file | ||
std::vector<write_fn> write_tasks; | ||
write_tasks.reserve(thread_count); | ||
std::for_each(thrust::make_counting_iterator(0), | ||
thrust::make_counting_iterator(thread_count), | ||
[&](auto tid) { | ||
write_tasks.emplace_back( | ||
write_fn{output_path, tables, encoding, compression, page_stats, tid}); | ||
}); | ||
|
||
std::vector<std::thread> threads; | ||
threads.reserve(thread_count); | ||
for (auto& c : write_tasks) { | ||
threads.emplace_back(std::thread{c}); | ||
} | ||
for (auto& t : threads) { | ||
t.join(); | ||
} | ||
}; | ||
|
||
// Read the parquet files with multiple threads | ||
{ | ||
std::cout << "Note: Not timing the initial parquet read as it may include\n" | ||
"times for nvcomp, cufile loading and RMM growth." | ||
<< std::endl | ||
<< std::endl; | ||
|
||
// tables read by each thread | ||
auto const tables = read_parquet_multithreaded(); | ||
|
||
// In case some kernels are still running on the default stre | ||
default_stream.synchronize(); | ||
|
||
// Write parquet file with the specified encoding and compression | ||
auto const page_stat_string = (page_stats.has_value()) ? "page stats" : "no page stats"; | ||
std::cout << "Writing at: " << output_path << " with encoding, compression and " | ||
<< page_stat_string << ".." << std::endl; | ||
|
||
// Write tables using multiple threads | ||
cudf::examples::timer timer; | ||
write_parquet_multithreaded(tables); | ||
|
||
// In case some kernels are still running on the default stream | ||
default_stream.synchronize(); | ||
|
||
// Print elapsed time | ||
timer.print_elapsed_millis(); | ||
} | ||
|
||
// Re-read the parquet files with multiple threads | ||
{ | ||
std::cout << "Reading for the second time using " << thread_count << " threads..." << std::endl; | ||
cudf::examples::timer timer; | ||
auto tables = read_parquet_multithreaded(); | ||
|
||
// Construct the final table | ||
auto table = std::move(tables[0]); | ||
std::for_each(tables.begin() + 1, tables.end(), [&](auto& tbl) { | ||
std::vector<cudf::table_view> const table_views{table->view(), tbl->view()}; | ||
table = cudf::concatenate(table_views, default_stream); | ||
}); | ||
|
||
// In case some kernels are still running on the default stream | ||
default_stream.synchronize(); | ||
|
||
// Print elapsed time and peak memory | ||
timer.print_elapsed_millis(); | ||
std::cout << "Peak memory: " << (stats_mr.get_bytes_counter().peak / 1048576.0) << " MB\n"; | ||
} | ||
|
||
return 0; | ||
} |