Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement GroupBy.value_counts to match pandas API #14114

Merged
merged 6 commits into from
Sep 20, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 143 additions & 0 deletions python/cudf/cudf/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2336,6 +2336,149 @@ def pct_change(
shifted = fill_grp.shift(periods=periods, freq=freq)
return (filled / shifted) - 1

def value_counts(
self,
subset=None,
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
dropna: bool = True,
) -> DataFrameOrSeries:
"""
Return a Series or DataFrame containing counts of unique rows.

Parameters
----------
subset : list-like, optional
Columns to use when counting unique combinations.
normalize : bool, default False
Return proportions rather than frequencies.
sort : bool, default True
Sort by frequencies.
ascending : bool, default False
Sort in ascending order.
dropna : bool, default True
Don't include counts of rows that contain NA values.

Returns
-------
Series or DataFrame
Series if the groupby as_index is True, otherwise DataFrame.

See Also
--------
Series.value_counts: Equivalent method on Series.
DataFrame.value_counts: Equivalent method on DataFrame.
SeriesGroupBy.value_counts: Equivalent method on SeriesGroupBy.

Notes
-----
- If the groupby as_index is True then the returned Series will have a
MultiIndex with one level per input column.
- If the groupby as_index is False then the returned DataFrame will
have an additional column with the value_counts. The column is
labelled 'count' or 'proportion', depending on the ``normalize``
parameter.

By default, rows that contain any NA values are omitted from
the result.

By default, the result will be in descending order so that the
first element of each group is the most frequently-occurring row.

Examples
--------
>>> import cudf
>>> df = cudf.DataFrame({
... 'gender': ['male', 'male', 'female', 'male', 'female', 'male'],
... 'education': ['low', 'medium', 'high', 'low', 'high', 'low'],
... 'country': ['US', 'FR', 'US', 'FR', 'FR', 'FR']
... })

>>> df
gender education country
0 male low US
1 male medium FR
2 female high US
3 male low FR
4 female high FR
5 male low FR

>>> df.groupby('gender').value_counts()
gender education country
female high FR 1
US 1
male low FR 2
US 1
medium FR 1
Name: count, dtype: int64

>>> df.groupby('gender').value_counts(ascending=True)
gender education country
female high FR 1
US 1
male low US 1
medium FR 1
low FR 2
Name: count, dtype: int64

>>> df.groupby('gender').value_counts(normalize=True)
gender education country
female high FR 0.50
US 0.50
male low FR 0.50
US 0.25
medium FR 0.25
Name: proportion, dtype: float64

>>> df.groupby('gender', as_index=False).value_counts()
gender education country count
0 female high FR 1
1 female high US 1
2 male low FR 2
3 male low US 1
4 male medium FR 1

>>> df.groupby('gender', as_index=False).value_counts(normalize=True)
gender education country proportion
0 female high FR 0.50
1 female high US 0.50
2 male low FR 0.50
3 male low US 0.25
4 male medium FR 0.25
"""

df = cudf.DataFrame.copy(self.obj)
groupings = self.grouping.names

if subset is None:
subset = [i for i in df.columns if i not in groupings]
stmio marked this conversation as resolved.
Show resolved Hide resolved

df["placeholder"] = 1
stmio marked this conversation as resolved.
Show resolved Hide resolved
result = (
df.groupby(groupings + subset, dropna=dropna)
stmio marked this conversation as resolved.
Show resolved Hide resolved
.placeholder.count()
stmio marked this conversation as resolved.
Show resolved Hide resolved
.sort_index()
.astype(np.int64)
)

if normalize:
levels = list(range(len(groupings), result.index.nlevels))
result /= result.groupby(
result.index.droplevel(levels),
).transform("sum")

if sort:
result = result.sort_values(ascending=ascending).sort_index(
level=range(len(groupings)), sort_remaining=False
)

result.name = "proportion" if normalize else "count"
if not self._as_index:
result = result.to_frame().reset_index()

return result

def _mimic_pandas_order(
self, result: DataFrameOrSeries
) -> DataFrameOrSeries:
Expand Down
49 changes: 49 additions & 0 deletions python/cudf/cudf/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -3473,3 +3473,52 @@ def test_categorical_grouping_pandas_compatibility():
expected = pdf.groupby("key", sort=False).sum()

assert_eq(actual, expected)


@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize("sort", [True, False])
@pytest.mark.parametrize("ascending", [True, False])
@pytest.mark.parametrize("dropna", [True, False])
@pytest.mark.parametrize("as_index", [True, False])
def test_group_by_value_counts(normalize, sort, ascending, dropna, as_index):
# From Issue#12789
df = cudf.DataFrame(
{
"gender": ["male", "male", "female", "male", "female", "male"],
"education": ["low", "medium", np.nan, "low", "high", "low"],
"country": ["US", "FR", "US", "FR", "FR", "FR"],
}
)
pdf = df.to_pandas()

actual = df.groupby("gender", as_index=as_index).value_counts(
normalize=normalize, sort=sort, ascending=ascending, dropna=dropna
)
expected = pdf.groupby("gender", as_index=as_index).value_counts(
normalize=normalize, sort=sort, ascending=ascending, dropna=dropna
)

# TODO: Remove `check_names=False` once testing against `pandas>=2.0.0`
assert_groupby_results_equal(
actual, expected, check_names=False, check_index_type=False
)


def test_group_by_value_counts_subset():
# From Issue#12789
df = cudf.DataFrame(
{
"gender": ["male", "male", "female", "male", "female", "male"],
"education": ["low", "medium", "high", "low", "high", "low"],
"country": ["US", "FR", "US", "FR", "FR", "FR"],
}
)
pdf = df.to_pandas()

actual = df.groupby("gender").value_counts(["education"])
expected = pdf.groupby("gender").value_counts(["education"])

# TODO: Remove `check_names=False` once testing against `pandas>=2.0.0`
assert_groupby_results_equal(
actual, expected, check_names=False, check_index_type=False
)