Skip to content

Commit

Permalink
Merge branch 'main' into azure-infiniband
Browse files Browse the repository at this point in the history
  • Loading branch information
melodywang060 authored Oct 11, 2024
2 parents 7c923d4 + 1e83a9e commit 7df9cdd
Show file tree
Hide file tree
Showing 4 changed files with 23 additions and 32 deletions.
3 changes: 2 additions & 1 deletion conda/environments/deployment_docs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@ dependencies:
- pydata-sphinx-theme>=0.15.4
- python=3.12
- pre-commit>=3.8.0
- sphinx>=8.0.2
# Upper bound pin on sphinx can be removed once https://github.com/mgaitan/sphinxcontrib-mermaid/issues/160 is resolved
- sphinx>=8.0.2,<8.1
- sphinx-autobuild>=2024.9.19
- sphinx-copybutton>=0.5.2
- sphinx-design>=0.6.1
Expand Down
32 changes: 11 additions & 21 deletions source/cloud/aws/eks.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,16 +24,15 @@ Now we can launch a GPU enabled EKS cluster. First launch an EKS cluster with `e

```console
$ eksctl create cluster rapids \
--version 1.24 \
--version 1.29 \
--nodes 3 \
--node-type=p3.8xlarge \
--timeout=40m \
--ssh-access \
--ssh-public-key <public key ID> \ # Be sure to set your public key ID here
--region us-east-1 \
--zones=us-east-1c,us-east-1b,us-east-1d \
--auto-kubeconfig \
--install-nvidia-plugin=false
--auto-kubeconfig
```

With this command, you’ve launched an EKS cluster called `rapids`. You’ve specified that it should use nodes of type `p3.8xlarge`. We also specified that we don't want to install the NVIDIA drivers as we will do that with the NVIDIA operator.
Expand All @@ -46,30 +45,21 @@ $ aws eks --region us-east-1 update-kubeconfig --name rapids

## Install drivers

Next, [install the NVIDIA drivers](https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html) onto each node.
As we selected a GPU node type EKS will automatically install drivers for us. We can verify this by listing the NVIDIA driver plugin Pods.

```console
$ helm install --repo https://helm.ngc.nvidia.com/nvidia --wait --generate-name -n gpu-operator --create-namespace gpu-operator
NAME: gpu-operator-1670843572
NAMESPACE: gpu-operator
STATUS: deployed
REVISION: 1
TEST SUITE: None
$ kubectl get po -n kube-system -l name=nvidia-device-plugin-ds
NAME READY STATUS RESTARTS AGE
nvidia-device-plugin-daemonset-kv7t5 1/1 Running 0 52m
nvidia-device-plugin-daemonset-rhmvx 1/1 Running 0 52m
nvidia-device-plugin-daemonset-thjhc 1/1 Running 0 52m
```

Verify that the NVIDIA drivers are successfully installed.

```console
$ kubectl get po -A --watch | grep nvidia
kube-system nvidia-driver-installer-6zwcn 1/1 Running 0 8m47s
kube-system nvidia-driver-installer-8zmmn 1/1 Running 0 8m47s
kube-system nvidia-driver-installer-mjkb8 1/1 Running 0 8m47s
kube-system nvidia-gpu-device-plugin-5ffkm 1/1 Running 0 13m
kube-system nvidia-gpu-device-plugin-d599s 1/1 Running 0 13m
kube-system nvidia-gpu-device-plugin-jrgjh 1/1 Running 0 13m
```{note}
By default this plugin will install the latest version on the NVIDIA drivers on every Node. If you need more control over your driver installation we recommend that when creating your cluster you set `eksctl create cluster --install-nvidia-plugin=false ...` and then install drivers yourself using the [NVIDIA GPU Operator](https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html).
```

After your drivers are installed, you are ready to test your cluster.
After you have confirmed your drivers are installed, you are ready to test your cluster.

```{include} ../../_includes/check-gpu-pod-works.md
Expand Down
16 changes: 8 additions & 8 deletions source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,25 +21,25 @@
author = "NVIDIA"

# Single modifiable version for all of the docs - easier for future updates
stable_version = "24.08"
nightly_version = "24.10"
stable_version = "24.10"
nightly_version = "24.12"

versions = {
"stable": {
"rapids_version": stable_version,
"rapids_api_docs_version": "stable",
"rapids_container": f"nvcr.io/nvidia/rapidsai/base:{stable_version}-cuda12.5-py3.11",
"rapids_notebooks_container": f"nvcr.io/nvidia/rapidsai/notebooks:{stable_version}-cuda12.5-py3.11",
"rapids_container": f"nvcr.io/nvidia/rapidsai/base:{stable_version}-cuda12.5-py3.12",
"rapids_notebooks_container": f"nvcr.io/nvidia/rapidsai/notebooks:{stable_version}-cuda12.5-py3.12",
"rapids_conda_channels": "-c rapidsai -c conda-forge -c nvidia",
"rapids_conda_packages": f"rapids={stable_version} python=3.11 cuda-version=12.5",
"rapids_conda_packages": f"rapids={stable_version} python=3.12 cuda-version=12.5",
},
"nightly": {
"rapids_version": f"{nightly_version}-nightly",
"rapids_api_docs_version": "nightly",
"rapids_container": f"rapidsai/base:{nightly_version + 'a'}-cuda12.5-py3.11",
"rapids_notebooks_container": f"rapidsai/notebooks:{nightly_version + 'a'}-cuda12.5-py3.11",
"rapids_container": f"rapidsai/base:{nightly_version + 'a'}-cuda12.5-py3.12",
"rapids_notebooks_container": f"rapidsai/notebooks:{nightly_version + 'a'}-cuda12.5-py3.12",
"rapids_conda_channels": "-c rapidsai-nightly -c conda-forge -c nvidia",
"rapids_conda_packages": f"rapids={nightly_version} python=3.11 cuda-version=12.5",
"rapids_conda_packages": f"rapids={nightly_version} python=3.12 cuda-version=12.5",
},
}
rapids_version = (
Expand Down
4 changes: 2 additions & 2 deletions source/platforms/coiled.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ To get started you need to install Coiled and login.

```console
$ conda install -c conda-forge coiled
$ coiled setup
$ coiled login
```

For more information see the [Coiled Getting Started documentation](https://docs.coiled.io/user_guide/getting_started.html).
Expand Down Expand Up @@ -82,7 +82,7 @@ We can also connect a Dask client to see that information for the workers too.
```python
from dask.distributed import Client

client = Client
client = Client(cluster)
client
```

Expand Down

0 comments on commit 7df9cdd

Please sign in to comment.