Skip to content

Commit

Permalink
object detection code release
Browse files Browse the repository at this point in the history
  • Loading branch information
rayleizhu committed Apr 11, 2023
1 parent 5b15121 commit 8c6f0f7
Show file tree
Hide file tree
Showing 285 changed files with 52,687 additions and 5 deletions.
2 changes: 0 additions & 2 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,3 @@ local*
outputs*
__pycache__
.pyc

object_detection/
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ class="center">

## News

* 2023-04-11: [object detection code](./object_detection/) is released. It achives significantly better results than the paper reported due to a bug fix.

* 2023-03-24: For better memory and computation efficieny, we are diving into the optimization of BRA with CUDA. Please stay tuned.
- Collaborations and contributions are welcome, especially if you are an expert in CUDA/[cutlass](https://github.com/NVIDIA/cutlass). There is a chance to co-author a paper.

Expand Down Expand Up @@ -99,7 +101,7 @@ This project is released under the MIT license. Please see the [LICENSE](LICENSE
## Citation
If you find this repository helpful, please consider citing:
```bibtex
@Article{zhu2022biformer,
@Article{zhu2023biformer,
author = {Lei Zhu and Xinjiang Wang and Zhanghan Ke and Wayne Zhang and Rynson Lau},
title = {BiFormer: Vision Transformer with Bi-Level Routing Attention},
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
Expand All @@ -112,7 +114,7 @@ If you find this repository helpful, please consider citing:
- [x] IN1k standard training code, log, and pretrained checkpoints
- [ ] IN1k token-labeling code
- [x] Semantic segmentation code
- [ ] Object detection code
- [x] Object detection code
- [x] Swin-Tiny-Layout (STL) models
- [x] Refactor BRA and BiFormer code
- [ ] Visualization demo
Expand Down
6 changes: 5 additions & 1 deletion environment.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,7 @@ dependencies:
- colorama==0.4.6
- contourpy==1.0.7
- cycler==0.11.0
- cython==0.29.34
- einops==0.6.0
- fairscale==0.4.13
- filelock==3.9.0
Expand All @@ -125,7 +126,9 @@ dependencies:
- matplotlib==3.7.1
- mdurl==0.1.2
- mmcls==0.25.0
- mmcv-full==1.7.1
- mmcv-full==1.7.0
- mmdet==2.25.3
- mmpycocotools==12.0.3
- mmsegmentation==0.30.0
- model-index==0.1.11
- omegaconf==2.3.0
Expand All @@ -146,6 +149,7 @@ dependencies:
- submitit==1.4.5
- tabulate==0.9.0
- termcolor==2.2.0
- terminaltables==3.1.10
- timm==0.8.15.dev0
- tqdm==4.65.0
- triton==1.1.1
Expand Down
50 changes: 50 additions & 0 deletions object_detection/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# COCO Object detection

## How to use

The environment for object detetction has been included in [../environment.yaml](../environment.yaml). Typically, You do not need to take care of it if you create
the environment as specified in [../INSTALL.md](../INSTALL.md). In case there are problems with mmcv or mmdetection, you may uninstall the package and then reinstall it mannually, e.g.

```bash
pip uninstall mmcv
pip install --no-cache-dir mmcv==1.7.0
```

* STEP 0: prepare data

```bash
$ mkdir data && ln -s /your/path/to/coco data/coco # prepare data
```

* STEP 1: run experiments

```bash
$ vim slurm_train.sh # change config file, slurm partition, etc.
$ bash slurm_train.sh
```

See [`slurm_train.sh`](./slurm_train.sh) for details.


## Results

| name | Pretrained Model | Method | Lr Schd | mAP_box | mAP_mask | log | mAP_box<sup>*</sup> | mAP_mask<sup>*</sup> | tensorboard log<sup>*</sup> | config |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| BiFormer-S | IN1k | MaskRCNN | 1x | 47.8 | 43.2 | [log](https://1drv.ms/u/s!AkBbczdRlZvChgmyNozEQrrsfOdG?e=aOCj2A) | 48.1 | 43.6 | [tensorboard.dev](https://tensorboard.dev/experiment/EvZZMPPRTA29oL5m5olPNw/#scalars&tagFilter=mAP&_smoothingWeight=0) | [config](./configs/coco/maskrcnn.1x.biformer_small.py) |
| BiFormer-B | IN1k | MaskRCNN | 1x | 48.6 | 43.7 | [log](https://1drv.ms/u/s!AkBbczdRlZvChhF-itieos4fg28D?e=Gor6oV) | - | - | - | [config](./configs/coco/maskrcnn.1x.biformer_base.py) |
| BiFormer-S | IN1k | RetinaNet | 1x | 45.9 | - | [log](https://1drv.ms/u/s!AkBbczdRlZvChhKipB3XMN4_nIvO?e=TYZzFc) | 47.3 | - | [tensorboard.dev](https://tensorboard.dev/experiment/0wwQtBNFRp2VBwQeFpZy0Q/#scalars&tagFilter=mAP&_smoothingWeight=0) | [config](./configs/coco/retinanet.1x.biformer_small.py) |
| BiFormer-B | IN1k | RetinaNet | 1x | 47.1 | - | [log](https://1drv.ms/u/s!AkBbczdRlZvChg-8GDypSY9leBsm?e=FyJQm1) |- | - | - | [config](./configs/coco/retinanet.1x.biformer_base.py) |

<font size=1>* : reproduced right before code release.</font>

**NOTE**: This repository produces significantly better performance than the paper reports, **possibly** due to

1. We fixed a ["bug"](./models_mm/biformer_mm.py) of extra normalization layers.
2. We used a different version of mmcv and mmdetetcion.
3. We used native AMP provided by torch instead of [Nvidia apex](https://github.com/NVIDIA/apex).

We do not know which factors actually work though.

## Acknowledgment

This code is built using [mmdetection](https://github.com/open-mmlab/mmdetection), [timm](https://github.com/rwightman/pytorch-image-models) libraries, and [UniFormer](https://github.com/Sense-X/UniFormer) repository.
48 changes: 48 additions & 0 deletions object_detection/configs/_base_/datasets/coco_detection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
48 changes: 48 additions & 0 deletions object_detection/configs/_base_/datasets/coco_instance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
16 changes: 16 additions & 0 deletions object_detection/configs/_base_/default_runtime.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
custom_hooks = [dict(type='NumClassCheckHook')]

dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
120 changes: 120 additions & 0 deletions object_detection/configs/_base_/models/mask_rcnn_r50_fpn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# model settings
model = dict(
type='MaskRCNN',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
Loading

0 comments on commit 8c6f0f7

Please sign in to comment.