Skip to content

reachusama/text-analysis-using-gpt3-embeddings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 

Repository files navigation

Analysing Amazon Product Reviews using Dimensions of Valence and Arousal in Python

Techniques:

OpenAI/GPT3, Random Forest Classification, SVM, Fast Clustering

Libraries Used:

  1. Loading, exploring and manipulating datasets: pandas, numpy, random, google.colab
  2. Error Handling for API calling and importing API keys from envirnoment: retry, time, os
  3. Using gpt3 completions, embeddings and generating multiclass precion-recall: openai
  4. For tokeizing text to perform validation for GPT3: transformers
  5. ML models for classifiers, dimensionality reduction, model analysis: sklearn
  6. For fast clustering and embeddings: sentence_transformers, torch
  7. Visualisation: matplotlib
  8. Model exports & imports: import pickle
  9. for removing warnings: import warnings

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published