Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PR-63: Outliers identifier #74

Merged
merged 4 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
141 changes: 141 additions & 0 deletions resources/src/ai/outliers_identifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (C) 2024 Eneo Tecnologia S.L.
#
# Authors:
# Miguel Álvarez Adsuara <[email protected]>
#
# This program is free software: you can redistribute it and/or modify it under the terms of the
# GNU Affero General Public License as published by the Free Software Foundation, either version 3
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License along with this program.
# If not, see <https://www.gnu.org/licenses/>.

import json
import pandas as pd
from resources.src.logger import logger
from sklearn.ensemble import IsolationForest

class OutlierIdentifier:
def __init__(self):
self.df = None
self.model = None

def prepare_data(self, all_ips_data):
"""
Prepare the data by flattening the input data, extracting relevant features,
and computing rolling statistics.

Args:
all_ips_data (dict): Dictionary containing time-series data for each IP.
"""
flattened_data = []
for ip, ip_data in all_ips_data.items():
for entry in ip_data:
flattened_data.append({
"ip": ip,
"timestamp": entry.get("timestamp"),
"bytes": entry.get("result", {}).get("bytes", 0),
})

self.df = pd.DataFrame(flattened_data)
self.df['timestamp'] = pd.to_datetime(self.df['timestamp'])
self.df['hour'] = self.df['timestamp'].dt.hour
self.df['minute'] = self.df['timestamp'].dt.minute
self.df['day'] = self.df['timestamp'].dt.day
self.df['dayofweek'] = self.df['timestamp'].dt.dayofweek
self.df['dayofyear'] = self.df['timestamp'].dt.dayofyear

self.df['rolling_mean'] = self.df['bytes'].rolling(window=5, min_periods=1).mean()
self.df['rolling_std'] = self.df['bytes'].rolling(window=5, min_periods=1).std()

self.df['rolling_mean'] = self.df['rolling_mean'].fillna(0)
self.df['rolling_std'] = self.df['rolling_std'].fillna(0)

self.df['low_traffic'] = self.df['bytes'] == 0

def train_model(self, X_train):
"""
Train the Isolation Forest model on the provided training data.

Args:
X_train (DataFrame): The training set features.
"""
self.model = IsolationForest(contamination=0.05, random_state=42)
self.model.fit(X_train)

def identify_implicated_ips(self, outliers):
"""
Identify IPs that contributed to the outlier events.

Args:
outliers (list): A list of outlier events with timestamps and expected values.

Returns:
dict: A dictionary with implicated IPs for each outlier event.
"""
self.df['outlier'] = self.model.predict(self.df[['hour', 'minute', 'day', 'dayofweek', 'dayofyear', 'rolling_mean', 'rolling_std', 'low_traffic']])
self.df['outlier'] = self.df['outlier'].apply(lambda x: 'anomaly' if x == -1 else 'normal')

implicated_ips = {"ips": []}
for outlier in outliers:
timestamp = outlier["timestamp"]
outlier_data = self.df[self.df['timestamp'] == timestamp]

implicated_ips["ips"].append({
"caused_by": list(outlier_data[outlier_data['outlier'] == 'anomaly']['ip'])
})

return implicated_ips

def execute(self, outliers, all_ips_data):
"""
Execute the full pipeline for detecting outliers and identifying implicated IPs.

Args:
outliers (list): A list of outlier events.
all_ips_data (dict): Dictionary containing time-series data for each IP.

Returns:
json: A JSON string with the implicated IPs and outlier information.
"""
self.prepare_data(all_ips_data)
self.train_model(self.df[['hour', 'minute', 'day', 'dayofweek', 'dayofyear', 'rolling_mean', 'rolling_std', 'low_traffic']])

implicated_ips = self.identify_implicated_ips(outliers)

logger.logger.error(implicated_ips)

return json.dumps(implicated_ips) if implicated_ips else {"ips": []}

def train_and_execute_model(self, outliers, all_ips_data):
"""
Wrapper function to handle errors during model training and execution.

Args:
outliers (list): A list of outliers to process.
all_ips_data (dict): Dictionary of IP data.

Returns:
json: A JSON response with the result or error message.
"""
try:
return self.execute(outliers, all_ips_data)
except Exception as e:
logger.logger.error("Could not execute anomaly detection")
return self.return_error(e)

def return_error(self, error="error"):
"""
Return a JSON formatted error message.

Args:
error (str): The error message to return.

Returns:
dict: A dictionary containing the error status and message.
"""
return { "status": "error", "msg": error }
31 changes: 29 additions & 2 deletions resources/src/server/rest.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,11 @@
from flask import Flask, jsonify, request

from resources.src.redborder.s3 import S3
from resources.src.ai import outliers, shallow_outliers
from resources.src.ai import outliers, shallow_outliers, outliers_identifier
from resources.src.druid import client, query_builder
from resources.src.logger import logger
from resources.src.config import configmanager


'''
Init local variables
'''
Expand Down Expand Up @@ -63,11 +62,13 @@
self.start_s3_sync_thread()
self.app = Flask(__name__)
self.app.add_url_rule('/api/v1/outliers', view_func=self.calculate, methods=['POST'])
self.app.add_url_rule('/api/v1/ip_identifier', view_func=self.identify_ip, methods=['POST'])
self.exit_code = 0
self.shallow = shallow_outliers.ShallowOutliers(
sensitivity = config.get("ShallowOutliers", "sensitivity"),
contamination = config.get("ShallowOutliers", "contamination")
)
self.identifier = outliers_identifier.OutlierIdentifier()
self.ai_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "ai")
self.deep_models={}

Expand Down Expand Up @@ -116,6 +117,32 @@
logger.logger.info("Starting outliers execution")
return self.execute_model(data, config.get("Outliers","metric"), model)

def identify_ip(self):
"""
Process the incoming request to identify implicated IPs based on outlier data.

Returns:
Response: A JSON response with implicated IPs or an error message.
"""
try:
payload = json.loads(request.form.get('payload', '{}'))

outliers = payload.get('outliers', [])
all_ips_data = payload.get('all_ips_data', {})

if not isinstance(outliers, list) or not isinstance(all_ips_data, dict):
return jsonify({"error": "Invalid data format"}), 400

result = self.identifier.train_and_execute_model(outliers, all_ips_data)

logger.logger.error(result)

return jsonify(result), 200

except Exception as e:
return jsonify({"error": str(e)}), 500
Fixed Show fixed Hide fixed


def decode_b64_json(self, b64_json):
"""
Decode a base64 json into a python dictionary.
Expand Down
Loading