Skip to content

Commit

Permalink
fix math formula size
Browse files Browse the repository at this point in the history
  • Loading branch information
relopezbriega committed Dec 19, 2024
1 parent fb1c5db commit 3f5832d
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 8 deletions.
8 changes: 6 additions & 2 deletions blog/2016/02/10/mas-algebra-lineal-con-python/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@
<meta itemprop="description" content="Algebra lineal con python. Campos, vectores, matrices, tensores, combinaciones lineales, matrices identidad, transpuesta e invertible, espacios vectoriales, independencia lineal, rango, norma, ortogonalidad, determinante, Eigenvalores y Eigenvectores.">
<meta itemprop="datePublished" content="2016-02-10T00:00:00+00:00">
<meta itemprop="dateModified" content="2016-02-10T00:00:00+00:00">
<meta itemprop="wordCount" content="5944">
<meta itemprop="wordCount" content="5948">
<meta itemprop="keywords" content="Python,Algebra,Programacion,Machine Learning,Redes Neuronales,Matematica,Calculo,Matrices,Vectores,Ecuaciones Diferenciales">


Expand Down Expand Up @@ -2507,7 +2507,11 @@ <h3 id="calculando-eigenvalores">Calculando Eigenvalores<a href="#calculando-eig
class="link--external" target="_blank" rel="noreferrer"

>polinomio característico</a> va a ser igual a:</p>
$$p(\lambda) = \det (A - \lambda I) = \det \begin{bmatrix}3 - \lambda & 2 \\ 7 & -2-\lambda\end{bmatrix} = (3 - \lambda)(-2-\lambda) - 14 \\ =\lambda^2 - \lambda - 20 = (\lambda - 5) (\lambda + 4)$$
$$
\begin{array}
p(\lambda) = \det (A - \lambda I) = \det \begin{bmatrix}3 - \lambda & 2 \\ 7 & -2-\lambda\end{bmatrix} = (3 - \lambda)(-2-\lambda) - 14 \\ =\lambda^2 - \lambda - 20 = (\lambda - 5) (\lambda + 4)
\end{array}
$$
<p>Por lo tanto los <a
href="https://es.wikipedia.org/wiki/Vector_propio_y_valor_propio"

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@
<meta itemprop="description" content="Simulación de Monte-Carlo con Python. Números aleatorios, cadenas de Markov, algoritmo Metropolis-Hastings, métodos MCMC.">
<meta itemprop="datePublished" content="2017-01-10T00:00:00+00:00">
<meta itemprop="dateModified" content="2017-01-10T00:00:00+00:00">
<meta itemprop="wordCount" content="3121">
<meta itemprop="wordCount" content="3123">
<meta itemprop="keywords" content="Python,Estadistica,Programacion,Analisis De Datos,Probabilidad,Distribuciones,Matematica,Monte Carlo,Metropolis">


Expand Down Expand Up @@ -1257,19 +1257,22 @@ <h4 id="la-distribución-invariante">La distribución invariante<a href="#la-dis
class="link--external" target="_blank" rel="noreferrer"

>distribución invariante</a>.</p>
$$ p_3 = p_2 P = \begin{bmatrix}
$$
\begin{eqnarray}
p_3 = p_2 P = \begin{bmatrix}
0.332 & 0.304 & 0.364
\end{bmatrix}, \\
\end{bmatrix}, \\\
p_4 = p_3 P = \begin{bmatrix}
0.3304 & 0.3032 & 0.3664
\end{bmatrix}, \\
\end{bmatrix}, \\\
p_5 = p_4 P = \begin{bmatrix}
0.33032 & 0.3036 & 0.36608
\end{bmatrix}, \\
\dots \hspace{1cm} \dots \\
\end{bmatrix}, \\\
\dots \hspace{1cm} \dots \\\
p_{10} = p_9 P = \begin{bmatrix}
0.330357 & 0.303571 & 0.366072
\end{bmatrix}
\end{eqnarray}
$$
<p>Veamos el ejemplo con la ayuda de <a
href="https://www.python.org/"
Expand Down

0 comments on commit 3f5832d

Please sign in to comment.