Skip to content

ren-lab/HiCNorm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

HiCNorm

Scripts to run HiCNorm

Usage

Rscript HiCNorm.R [options]

Options:

-i INPUT, --input=INPUT
	raw HiC matrix

-o OUTPUT, --output=OUTPUT
	normalized HiC matrix

-f GENOMIC_FEATURE, --genomic_feature=GENOMIC_FEATURE
	genomic feature file

-c COV, --cov=COV
	minimum coverage [default 1]

-l LEN, --len=LEN
	minimum effective fragment length fraction of the bin [default 0.1]

-s GC, --gc=GC
	minimum gc content [default 0.3]

-m MAP, --map=MAP
	minimum mappability [default 0.8]

-n, --negative_binomial
	use negative binomial regression

-h, --help
	Show this help message and exit

Input and Output Format

Input matrix file contains four columns: chromosome, first bin, second bin, and raw counts. Input genomic feature files contain six columns: chromosome, bin start position, bin end position, fragment length, GC content, and mappbility. Output matrix file cotains four columns: chromosome, first bin, second bin, and normalized counts.

Example

A demo data of chrmosome 19 form mESC HindIII HiC data is in the data folder. The data is from Fraser, J. et al. Molecular Systems Biology (2015).

Rscript HiCNorm.R -i data/mESC.HindIII.raw.chr19.txt -o data/mESC.HindIII.HiCNorm.chr19.txt -f data/F_GC_M_Hind3_50Kb_el.chr19.txt

Genomic Feature Files

Genomic feature files for GRCh38, hg19, mm10, and mm9 can be found at here.

Citation

If you use HiCNorm, please cite the following paper:

  • Hu M, Deng K, Selvaraj S, Qin ZS, Ren B and Liu JS (2012) HiCNorm: removing biases in Hi-C data via Poisson regression. (2012) Bioinformatics 28 (23), 3131-3133.

Contact

For any questions or comments, please contact Ming Hu or Yunjiang Qiu.

About

Scripts to run HiCNorm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages