generated from reprograma/onX-sx-temaX
-
Notifications
You must be signed in to change notification settings - Fork 32
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
exercicio semana 11 #2
Open
andrezataina
wants to merge
2
commits into
reprograma:main
Choose a base branch
from
andrezataina:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import pandas as pd | ||
|
||
'''['Track', 'Album Name', 'Artist', 'Release Date', 'ISRC', | ||
'All Time Rank', 'Track Score', 'Spotify Streams', | ||
'Spotify Playlist Count', 'Spotify Playlist Reach', | ||
'Spotify Popularity', 'YouTube Views', 'YouTube Likes', 'TikTok Posts', | ||
'TikTok Likes', 'TikTok Views', 'YouTube Playlist Reach', | ||
'Apple Music Playlist Count', 'AirPlay Spins', 'SiriusXM Spins', | ||
'Deezer Playlist Count', 'Deezer Playlist Reach', | ||
'Amazon Playlist Count', 'Pandora Streams', 'Pandora Track Stations', | ||
'Soundcloud Streams', 'Shazam Counts', 'TIDAL Popularity', | ||
'Explicit Track'],''' | ||
|
||
|
||
df = pd.read_csv("C:/Users/andre/OneDrive/Área de Trabalho/REPROGRAMA/SEMANA 11/on33-python-s09-pandas-numpy-I/material/mais_ouvidas_2024.csv") | ||
|
||
#print(df) | ||
|
||
#print(df.head()) | ||
#print(df.columns) | ||
|
||
#print(df.dtypes) | ||
|
||
df['All Time Rank'] = df['All Time Rank'].replace({',': ''}, regex=True).astype(int) #Converte a coluna 'Spotify Streams' para tipo numérico, removendo separadores de milhar e convertendo com astype | ||
#print(df) | ||
df['Spotify Streams'] = df['Spotify Streams'].replace({',': ''}, regex=True).astype(float) | ||
df['Spotify Playlist Count'] = df['Spotify Playlist Count'].replace({',': ''}, regex=True).astype(float) | ||
df['Spotify Playlist Reach'] = df['Spotify Playlist Reach'].replace({',': ''}, regex=True).astype(float) | ||
df['YouTube Views'] = df['YouTube Views'].replace({',': ''}, regex=True).astype(float) | ||
df['YouTube Likes'] = df['YouTube Likes'].replace({',': ''}, regex=True).astype(float) | ||
df['TikTok Posts'] = df['TikTok Posts'].replace({',': ''}, regex=True).astype(float) | ||
df['TikTok Likes'] = df['TikTok Likes'].replace({',': ''}, regex=True).astype(float) | ||
df['TikTok Views'] = df['TikTok Views'].replace({',': ''}, regex=True).astype(float) | ||
df['YouTube Playlist Reach'] = df['YouTube Playlist Reach'].replace({',': ''}, regex=True).astype(float) | ||
df['AirPlay Spins'] = df['AirPlay Spins'].replace({',': ''}, regex=True).astype(float) | ||
df['SiriusXM Spins'] = df['SiriusXM Spins'].replace({',': ''}, regex=True).astype(float) | ||
df['Deezer Playlist Reach'] = df['Deezer Playlist Reach'].replace({',': ''}, regex=True).astype(float) | ||
df['Pandora Streams'] = df['Pandora Streams'].replace({',': ''}, regex=True).astype(float) | ||
df['Pandora Track Stations'] = df['Pandora Track Stations'].replace({',': ''}, regex=True).astype(float) | ||
df['Soundcloud Streams'] = df['Soundcloud Streams'].replace({',': ''}, regex=True).astype(float) | ||
df['Shazam Counts'] = df['Shazam Counts'].replace({',': ''}, regex=True).astype(float) | ||
df['Release Date'] = pd.to_datetime(df['Release Date'], format="mixed") | ||
print(df.dtypes) | ||
|
||
|
||
|
||
df["Streaming Popularity"] = (df["Spotify Popularity"] + df["YouTube Views"] + df["TikTok Likes"] + df["Shazam Counts"]) / 4 | ||
|
||
print(df["Streaming Popularity"]) | ||
|
||
df["Total Streams"] = df["Spotify Streams"] + df["YouTube Views"] + df["TikTok Views"] + df["Pandora Streams"] + df["Soundcloud Streams"] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. pode tentar o uso do There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. obrigada |
||
|
||
print(df["Total Streams"]) | ||
|
||
print(df) | ||
|
||
filtered_df = df [(df["Spotify Popularity"] > 80) & (df["Total Streams"] > 1000000)] | ||
print(filtered_df) | ||
|
||
filtered_df.to_json("./filtered_list.json", index=False) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import pandas as pd # import o panda como um pd(apelido para o panda) | ||
|
||
# A prof pediu para colocar os elementos que sairam pelo df.columns (o nome das colunas) | ||
#'TransactionID', 'Date', 'MobileModel', 'Brand', 'Price', 'UnitsSold','TotalRevenue', 'CustomerAge', 'CustomerGender', 'Location','PaymentMethod' | ||
|
||
|
||
df = pd.read_csv("C:/Users/andre/OneDrive/Área de Trabalho/REPROGRAMA/SEMANA 11/on33-python-s09-pandas-numpy-I/material/mobile_sales.csv") | ||
|
||
# print(df.head()) # o head retorna o df = seria tipo um banco de dados, o head mostra as primeiras 5 linhas | ||
|
||
print(df.head(n=10)) # dessa forma vai me mostrar as 10 primeiras linhas, logo n retorna as linhas que solicitei (se n for maior que o número de linhas existentes ele mostra só as linhas existentes, não dá erro) | ||
|
||
print(df.columns) # mostra quantas colunas tem no csv e mostra as colunas = o index(os nomes) | ||
|
||
# df_valores_nulos =df.isnull() # retorna False se os valores não forem nulos e True se tiver valor nulo na tabela (nulo é espaço vazio) | ||
# print(df_valores_nulos.sum()) | ||
print(df.duplicated().sum()) #retorna as duplicadas, usando o Sum mostra o total de duplicadas | ||
|
||
print(df.dtypes) # retorna o tipo de dados de cada coluna / object = string | ||
|
||
# item = df['Date'] | ||
# print(item) # ou print(df['Date']) imprime a coluna Date | ||
|
||
#Para converter dados | ||
# o pd.to_datetime - transformamos a coluna date em datetime | ||
df['Date'] = pd.to_datetime(df['Date'], format="mixed") # o mixed mantem o formato e serve para mostrar o formato real que ela tem | ||
|
||
print(df.dtypes) | ||
|
||
df["Total Sales Value"] = df["Price"] * df["UnitsSold"] # Cria uma nova coluna com o título Total Sales Value através do produto de Price x UnitsSold | ||
print(df["Total Sales Value"]) # print a nova coluna | ||
|
||
print(df.columns) | ||
|
||
df["Profit Margin"] = (df["Price"] * 0.30) * df["UnitsSold"] | ||
print(df["Profit Margin"]) # print a nova coluna | ||
|
||
print(df.columns) | ||
|
||
df["Profit Margin 2"] = df["Total Sales Value"] * 0.30 | ||
print(df["Profit Margin 2"]) # print a nova coluna | ||
|
||
filtered_df = df [(df["Total Sales Value"] > 100_000) & (df["Profit Margin 2"] > 20_000)] | ||
print(filtered_df) | ||
|
||
filtered_df2 = df [(df["PaymentMethod"] == "Online")] | ||
print(filtered_df2) | ||
|
||
filtered_df.to_csv("./filtered_list.csv", index=False) # Transforma o arquivo filtrado em csv e index = False não coloca os index |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
TransactionID,Date,MobileModel,Brand,Price,UnitsSold,TotalRevenue,CustomerAge,CustomerGender,Location,PaymentMethod,Total Sales Value,Profit Margin,Profit Margin 2 | ||
79397f68-61ed-4ea8-bcb2-f918d4e6c05b,2024-01-06,direction,Green Inc,1196.95,85,28002.8,32,Female,Port Erik,Online,101740.75,30522.225,30522.225 | ||
f7e98db9-cb87-453e-8179-e48ba5443932,2024-03-07,idea,"Massey, Nicholson and Young",1498.13,70,9703.89,45,Female,Port Daryl,Debit Card,104869.1,31460.730000000003,31460.73 | ||
e59a8eb1-8448-4719-8502-2c97407d0ff9,2024-01-08,free,Nelson and Sons,1333.31,79,49676.78,45,Female,East Brianstad,Online,105331.48999999999,31599.447,31599.446999999996 | ||
b5119fd6-e0d7-44ee-8f87-44f91d42de3f,2024-05-23,law,Roach-Strong,1236.37,89,26408.0,43,Female,Victorview,Credit Card,110036.93,33011.079,33011.079 | ||
03d675d2-f4c7-4860-b159-f7df7142b87e,2024-07-07,special,Weaver Ltd,1418.24,99,1877.76,42,Other,Port Ericstad,Credit Card,140405.76,42121.727999999996,42121.728 | ||
9b4f4a39-8512-411a-8533-2b1d99cf4e64,2024-06-24,travel,"James, Garcia and Brown",1141.24,94,98242.2,28,Female,Bellview,Cash,107276.56,32182.968,32182.967999999997 | ||
8d757a3c-6ffc-4b44-97aa-de01f6bc3b56,2024-06-06,bar,Jordan-Williams,1409.49,81,29360.24,40,Other,Alberttown,Credit Card,114168.69,34250.606999999996,34250.606999999996 | ||
8201d6e3-4f18-4911-9b28-c50627fd1640,2024-02-11,test,Walker-White,1444.64,89,12646.8,51,Female,East Kenneth,Cash,128572.96,38571.888,38571.888 | ||
8499624a-1c49-4645-9c65-df13c57c87d9,2024-07-01,matter,Andrews LLC,1269.71,96,72588.74,41,Female,Powellmouth,Credit Card,121892.16,36567.648,36567.648 | ||
7f36c3a2-ff43-483b-adb8-668e37d16534,2024-07-15,partner,Hebert Inc,1352.48,95,20333.88,32,Other,Crawfordville,Online,128485.6,38545.68,38545.68 | ||
56ad37f3-bb16-4f08-90ba-140b27eebd4a,2024-07-01,century,"Bates, Pearson and Hardy",1245.2,81,59695.92,34,Female,Thomasfort,Cash,100861.2,30258.36,30258.359999999997 | ||
5a5ebad6-dab7-4388-9961-411136b68e27,2024-01-24,eight,Martin-Carson,1256.1,90,25697.72,26,Other,South Benjamin,Cash,113048.99999999999,33914.7,33914.7 | ||
49ee7bcb-01a3-4c71-9273-49d4afd465a4,2024-03-01,son,Anderson-White,1285.81,82,27464.7,44,Female,Port Williamshire,Online,105436.42,31630.926,31630.926 | ||
7ebd3c9c-21a9-48d4-802b-50b2ae3d74e6,2024-07-25,play,Cabrera-White,1358.1,83,30654.0,40,Other,New Christina,Credit Card,112722.29999999999,33816.689999999995,33816.689999999995 | ||
96845a93-75b3-4a60-b213-201181842f96,2024-04-16,skill,"White, Ford and Andrews",1360.71,84,65262.78,29,Female,Snowfurt,Online,114299.64,34289.892,34289.892 | ||
5633dd9e-0ad3-455e-8b00-7236c2379e1b,2024-07-25,security,"Ware, May and Lopez",1485.6,68,51970.4,47,Female,Michaelland,Credit Card,101020.79999999999,30306.239999999998,30306.239999999994 | ||
fdf59c83-bd14-459c-a73d-1c17b86a5a94,2024-01-13,effect,"Martin, Smith and Patterson",1317.86,84,8388.09,54,Female,Davisbury,Credit Card,110700.23999999999,33210.07199999999,33210.07199999999 | ||
07602482-1535-4857-b739-94bbfbbb2ef8,2024-04-05,property,Torres Inc,1285.42,91,16868.06,58,Other,Stacyborough,Credit Card,116973.22,35091.966,35091.966 | ||
74df89fb-b693-457d-a68e-e017937d9fe0,2024-03-20,middle,"Cooper, Mcclain and Cook",1276.97,85,119864.64,50,Female,West Alice,Debit Card,108542.45,32562.735,32562.734999999997 | ||
3b05d54f-0bdf-444c-a021-19e842585d6b,2024-05-28,involve,Figueroa LLC,1184.54,89,23249.54,32,Female,South Melissa,Online,105424.06,31627.217999999997,31627.217999999997 | ||
b09fb488-824a-416d-8800-bbd06fd3530e,2024-02-07,nothing,"Miller, Hill and Lawson",1278.82,91,61818.67,49,Female,Thomasview,Credit Card,116372.62,34911.78599999999,34911.786 | ||
da4115cc-24fb-4ca6-835c-6eeaf8d03cf2,2024-05-27,mention,"Skinner, Ramirez and Kelley",1486.29,68,39261.45,63,Male,Herreraborough,Cash,101067.72,30320.316,30320.316 | ||
97b019b5-ee7f-47bb-a9fe-8a23c0ca4b55,2024-05-11,woman,Williamson-Clay,1378.49,80,10696.96,22,Female,Christopherbury,Debit Card,110279.2,33083.759999999995,33083.759999999995 | ||
0cc43991-586c-4734-94cc-ff0163883c1f,2024-04-15,situation,Stein-Bridges,1426.72,84,94828.04,41,Male,Espinozamouth,Online,119844.48,35953.344000000005,35953.344 | ||
821fa086-7197-4c69-9733-1dcc939af665,2024-04-06,sing,Cobb LLC,1178.88,89,33021.82,53,Male,Jimchester,Online,104920.32,31476.096000000005,31476.096 | ||
c07fff34-92b2-42e0-982b-6dd160b071e1,2024-04-02,operation,"Duncan, Mendoza and Mcdowell",1477.14,90,66427.94,51,Other,South Brandon,Debit Card,132942.6,39882.78,39882.78 | ||
57a14899-fdc3-4bc4-82fb-dee041cc5085,2024-03-29,build,Andrews-Martin,1134.19,95,55740.27,21,Male,East Brian,Credit Card,107748.05,32324.415,32324.415 | ||
1bcdf294-8f88-4cdd-aa1b-5296be5466b4,2024-03-30,expect,"Jackson, White and Brown",1409.21,76,8286.95,43,Other,Jordanfurt,Credit Card,107099.96,32129.987999999998,32129.988 | ||
918c1785-2c85-4757-a15e-cfddb38dd38e,2024-05-27,bad,"Mcmahon, Jones and Baker",1317.59,86,102433.02,28,Other,New Charles,Credit Card,113312.73999999999,33993.822,33993.82199999999 | ||
0835e90c-955f-47dc-87df-98c314e501a7,2024-06-25,former,Weaver-Thompson,1196.33,87,115585.69,35,Other,Brandonton,Online,104080.70999999999,31224.212999999996,31224.212999999996 | ||
d0da1b38-58fd-4b3f-85fa-d9a8f45ee603,2024-01-20,practice,Wilcox PLC,1293.55,95,85958.04,44,Male,Mclaughlinburgh,Cash,122887.25,36866.175,36866.174999999996 | ||
83f22533-6d79-48b7-9d4c-e78aadf0595a,2024-01-23,protect,"Burns, Davila and Camacho",1297.7,85,68618.72,36,Female,North Johnport,Debit Card,110304.5,33091.35,33091.35 | ||
1c06d99c-d59c-47e8-83ba-38a40a00be41,2024-04-01,artist,Smith-Tucker,1294.76,99,9072.42,42,Male,Greeneview,Debit Card,128181.24,38454.372,38454.372 | ||
56f4a3f9-ee2d-4c28-b836-8f183b0333b0,2024-04-05,they,"Kirby, Oneill and Carter",1345.42,94,31312.96,25,Female,Steelemouth,Online,126469.48000000001,37940.844000000005,37940.844000000005 | ||
784b0c63-1eb4-42bf-a8e1-de0d1f9bbbb2,2024-05-18,blood,Fleming Group,1465.14,80,11440.5,60,Male,Newmantown,Cash,117211.20000000001,35163.36,35163.36 | ||
1cafe067-7e81-46ff-9990-579adaebc2cf,2024-07-08,senior,Jensen-Lowe,1483.91,94,12619.62,29,Female,West Susan,Online,139487.54,41846.262,41846.262 | ||
077487a5-61c4-4f29-bd88-49901d7b47e7,2024-04-30,painting,Harris-Bell,1385.88,83,9700.6,41,Other,North Samuel,Online,115028.04000000001,34508.412000000004,34508.412000000004 | ||
4fe52be3-0c3e-4098-bc58-8f391cc3fb26,2024-04-29,born,Cunningham-Hawkins,1390.89,79,60684.54,28,Female,Port Fernandomouth,Credit Card,109880.31000000001,32964.093,32964.093 | ||
0740c846-3424-4692-afee-088248bbfd37,2024-07-22,figure,Flowers-Erickson,1408.39,97,44118.9,30,Other,South Holly,Online,136613.83000000002,40984.149,40984.149000000005 | ||
c1dd718f-8c25-47a9-bc37-5dd6c767199e,2024-02-26,rule,"Vasquez, Roberts and Johnson",1458.6,85,6503.25,19,Other,Bowentown,Credit Card,123980.99999999999,37194.299999999996,37194.299999999996 | ||
b563bdbe-055d-41a8-8cea-06be0db9c82c,2024-05-02,possible,"Johnson, Mcconnell and May",1385.71,75,24011.36,57,Male,Sullivanmouth,Credit Card,103928.25,31178.475000000002,31178.475 | ||
15b09d84-166a-4a3d-a92b-d6cddc7e46cf,2024-05-15,experience,Young Inc,1341.15,93,99642.96,55,Male,Lawsonbury,Credit Card,124726.95000000001,37418.085,37418.085 | ||
6c234dd7-845d-49d8-a506-0d0525939c52,2024-05-14,most,"Weaver, Young and King",1235.36,98,22969.48,25,Female,Micheleshire,Online,121065.27999999998,36319.583999999995,36319.583999999995 | ||
173d6e2c-d2d4-4a78-9b56-8ff05194c0be,2024-07-20,thus,Anderson-Burns,1253.69,94,65396.79,23,Male,Brownburgh,Online,117846.86,35354.058000000005,35354.058 | ||
26760d0b-ece5-48d9-906f-6511c119a434,2024-04-08,fine,Sampson-Kennedy,1179.65,89,50670.65,39,Other,South Christina,Credit Card,104988.85,31496.655000000002,31496.655 | ||
9230af26-83a1-4066-8d7a-8f32cb65a58c,2024-06-12,industry,"Barrett, Figueroa and White",1384.31,86,64326.15,45,Other,North Jeffrey,Debit Card,119050.65999999999,35715.198,35715.198 | ||
95bee8ce-4701-4a6b-8a17-a68f2e661677,2024-03-10,director,Dennis-Sanchez,1343.65,96,3301.35,19,Female,Lake Christopher,Online,128990.40000000001,38697.12,38697.12 | ||
05dc416c-5c87-4726-88bb-c3f02350f9d4,2024-06-18,easy,Jones-Nguyen,1354.53,88,16047.56,63,Other,West Kayla,Credit Card,119198.64,35759.592,35759.592 | ||
06cbf9e5-391e-4727-a5b0-24c93b3f88df,2024-07-03,option,"Hanson, Barron and Castillo",1110.66,93,65983.14,25,Female,Dunnland,Debit Card,103291.38,30987.414000000004,30987.414 | ||
385776a8-dd02-47b3-ac81-848385c53e01,2024-01-25,face,"Hester, Lee and Kirby",1309.52,80,52684.5,55,Female,Kellyton,Cash,104761.6,31428.48,31428.48 | ||
2ad868ea-e6ec-4c08-90df-28627a36cd19,2024-05-27,science,"Daniels, Rojas and Pearson",1137.5,96,14628.86,29,Male,Sheilaburgh,Online,109200.0,32760.0,32760.0 | ||
21cdcebc-fa3e-413a-9702-8fbd7b1d8682,2024-05-20,plant,Thomas Ltd,1217.74,96,65193.3,45,Other,Mooreburgh,Cash,116903.04000000001,35070.912,35070.912000000004 | ||
976cc526-100f-41ea-a8fa-6beb56f959f9,2024-02-13,decision,Miller-Jordan,1251.55,95,31085.22,55,Female,Michaelhaven,Debit Card,118897.25,35669.174999999996,35669.174999999996 | ||
c4c114b1-252e-4e40-9c57-c08f2d7388bc,2024-02-01,particularly,"Myers, Wilcox and Beck",1466.37,86,28288.0,22,Male,Danielbury,Online,126107.81999999999,37832.346,37832.346 | ||
c390e049-3c4f-4b58-ad23-f52c64d7768f,2024-01-18,resource,"Fox, Stevens and Bell",1114.73,91,7388.25,64,Male,East Robertahaven,Debit Card,101440.43000000001,30432.128999999997,30432.129 | ||
903f5961-35c7-47b9-a1f1-5492aa15b049,2024-04-06,four,Robinson-Thompson,1223.95,95,8217.44,43,Female,East Adam,Credit Card,116275.25,34882.575,34882.575 | ||
cf0ec4eb-6751-4904-9980-9cbacd679c14,2024-03-15,hope,Hamilton-Garcia,1348.6,79,44273.85,55,Female,Tannerfort,Debit Card,106539.4,31961.82,31961.819999999996 | ||
f503c272-a176-4704-9011-e47781852269,2024-03-19,huge,Allen-Mays,1349.26,83,98113.14,52,Male,Danielport,Online,111988.58,33596.574,33596.574 | ||
246f33f9-10a0-4d0d-82f5-e7c2164caf37,2024-07-14,around,"Carroll, Brown and Bates",1486.13,75,2336.76,20,Female,Amybury,Online,111459.75000000001,33437.925,33437.925 | ||
b4df370f-821b-43aa-a876-841b99222c0b,2024-07-01,discussion,"Santiago, Yoder and Stevens",1447.46,73,73070.87,59,Male,Andreaview,Online,105664.58,31699.374,31699.374 | ||
fcf20873-f45d-4ae1-ba0a-6333c35a01f6,2024-01-23,watch,Morrison-Stanley,1424.36,79,35283.6,63,Other,Gibbston,Credit Card,112524.43999999999,33757.331999999995,33757.331999999995 | ||
41f08915-addb-4966-8628-038c479c619a,2024-01-28,challenge,Brooks Ltd,1386.69,76,28865.7,39,Male,Ronaldchester,Credit Card,105388.44,31616.532,31616.532 |
Large diffs are not rendered by default.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
o pandas tem uma função que faz isso automaticamente, pode tentar assim