Cutting-edge platform for clean hydrogen innovation, AI-powered nanomaterial analytics, and real-time monitoring.
HyCAN is an open-source AI-enhanced hydrogen research platform integrating:
- Advanced synthesis and reaction monitoring
- Nanomaterial classification and simulation
- Real-time dashboards for analytics
- A modular, cross-platform architecture
- ⚛️ Hydrogen simulation & catalyst design
- 🤖 AI/ML models for prediction and automation
- 📈 Interactive visual dashboards
- 📊 Data ingestion, transformation, and analysis
- 🧬 Bioinformatics tools for synthetic biology workflows
- 🐳 Dockerized, scriptable, and field-deployable
Platform | Installer |
---|---|
Ubuntu/Debian | ./build/hycan-x.x.x.deb |
Windows | ./build/HyCAN-Setup-x.x.x.exe |
Linux (Portable) | ./build/HyCAN-x86_64.AppImage |
docker build -t hycan:latest .
docker-compose up --build
git clone https://github.com/rfc391/HyCAN.git
cd HyCAN
pip install -r requirements.txt
python main.py
hycan-cli --simulate data/example_data.csv --model core/anomaly_detection.py
Use the GUI dashboard:
hycan-cli --dashboard
Folder | Description |
---|---|
core/ |
AI/ML models & training logic |
services/ |
Microservices & APIs |
frontend/ |
Web interface files |
config/ |
YAML/INI configs for modules |
visualization/ |
Notebooks, dashboards, and plots |
tests/ |
All test scripts using PyTest |
docs/ |
User and developer documentation |
black . --check
flake8 .
pytest tests/
- Auto-build: GitHub Actions for
.deb
,.exe
,.AppImage
- Documentation:
mkdocs serve
- Web Dashboard: Svelte/JS frontend (served via Flask or FastAPI)
This project is under the MIT License.
We welcome PRs and new feature suggestions. See docs/CONTRIBUTING.md
.