The checklist for refactor progress
- Check consistency with Py2D
- RHS
- Forcing: FK
- CN for
$\Pi$ formulationpsiTemp = RHS/(1+dt*alpha+0.5*dt*(nu+ve)*Ksq)
- Check operators and grid
[ij]
vs[xy]
(all in[ij]
)- meshgrid Kx, Ky
- meshgrid xx, yy
- Checked
$u,v$ calculations, and added a function:psi_2_uv
- Change
$\beta*v$ term to match the Py2D convention: changed with 'ij' indexing grid
- Option for calculation of
$\Pi$ - From
$\sigma$ - From
$\tau$
- From
- Optional CPU-GPU backend
- Consistent model action (
$c_l^3$ and$c_s^2$ ) - Options to save a list of parameters (
$\omega$ ,$\psi$ ,$\nu_e$ ,$c_{model}$ ,$\Pi$ , action list) - Re-organize the state model, maybe have it as a list of options (accumalative):
- Global: energy spectra
- Global: enstrophy spectra
- local:
$\nabla u$ - local:
$\nabla \nabla u$ - choice of invariants
$\lambda_i$
- Update initial condition for cases (and the corresponding spectra)
- Case 1:
$\kappa_f=4$ , Re$=20\times10^3$ ,$\beta=0$ - Case 2:
$\kappa_f=4$ , Re$=20\times10^3$ ,$\beta=0$ - Case 3:
$\kappa_f=25$ , Re$=20\times10^3$ ,$\beta=20$
- Case 1:
- Check consistency of IC mat files with the solver
- Case management system: Copy config file in the folder
- bring options to sh file:
- ["Policy"]["Distribution"] choice
- Retrain with a [super-]gaussian spectra (to have a better behaving interscale transfers )
- Code to track interscale variation while training
- Double check the naming of time steps: n_init, ...
-
python 3.6
-
For GPU support:
- jax 0.4.5
- Korali + JAX docker
- jax=0.4.5 - jaxlib=0.4.4+cuda11.cudnn86
To run the training
bash run.sh
To run post process
bash runpost.sh
To delete all data files in the folder
bash clean.sh
- Mojgani, R., Waelchli, D., Guan, Y., Koumoutsakos, P., Hassanzadeh, P. "Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence", arXiv: 2312.00907, 2023.(url)
BibTeX
@article{Mojgani_arxiv_2023, title={Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence}, author={Rambod Mojgani and Daniel Waelchli and Yifei Guan and Petros Koumoutsakos and Pedram Hassanzadeh}, year={2023}, eprint={2312.00907}, archivePrefix={arXiv}, }