- python3.5+
- numpy
- pandas
- matplotlib
- sklearn
- LightGBM
-
更换dataSet目录里面的数据集(数据集过大我只上传了一小部分)
- train_feature.csv : 训练集
- validate_feature.csv : 验证集
- 注:两个数据集内的维度要一致。且包含一个标签列,并命名为“target”
-
更换self.columns为train_feature.csv内的属性名,且第一个元素必须为标签名“target”,其它全为特征名称
-
Genetic_algorithm.py众初始化种群initPopulation那里也要做相应修改
-
修改self.ga类参数(可选)
-
修改主函数里的群体个数和迭代次数(可选)
- 评价指标:auc (可修改)
- 模型:LightGBM (可修改)
程序运行过程会打印出中间过程,最终会绘出迭代次数与最优个体适应图的折线图以及打印出最有个体及其适应度。
经过两个不同比赛的尝试,评价指标分别是f1_score和auc,线上线下同增减的使用本算法才能收获一个好的结果。