Skip to content

VAST Model with Habitat Covariates for use in Alaska Survey Modeling

Notifications You must be signed in to change notification settings

rooperc4/HISAVAST

Repository files navigation

Single Species models for the Aleutian Islands RACE Bottom Trawl Survey with habitat covariates

Dr. Curry J. Cunningham, modified by Pam Goddard, Rachel Wilborn and Chris Rooper August, 2018

# clear the workspace before running code
rm(list=ls())
# clean the cache
clean_cache(clean = FALSE, path = opts_chunk$get("cache.path"))
## NULL

Purpose

The purpose of this document is to describe how to generate a model-based index of abundance using the spatio-temporal delta-GLMM in the VAST package. This model uses habitat covariates to produce the index.

Specifics of this Example:

  • Uses RACE bottom trawl survey data.
    • Data are available from the /data folder
  • Single species implementation.
  • Aleutian Islands survey data.
  • Uses depth, temperature, slope, maximum tidal current, longitude and ROMS bottom currents as linear covariates in the model (see Turner et al. 2017 for details on habitat variables)

Setup

Install required packages

# devtools::install_github("nwfsc-assess/geostatistical_delta-GLMM") 
# devtools::install_github("james-thorson/VAST") 
# devtools::install_github("james-thorson/utilities")
# install.packages("dplyr", repos="http://cran.us.r-project.org")

Load required packages

library(dplyr)
library(VAST)
library(TMB)
library(raster)
library(rgdal)
library(maptools)
library(gstat)
library(rgeos)
library(proj4)
library(sp)
library(maps)
library(devtools)
library(ggplot2)
library(pander)
library(mgcv)
library(MEHRSI)
library(randomForest)
devtools::install_github("rooperc4/GLMGAMRF")
library("GLMGAMRF")
devtools::install_github("rooperc4/HISAVAST")
library(HISAVAST)
# libary(tidyverse)

Setup model

Define species of interest (based on species code) and survey name. In this case we have chosen Northern Rockfish (species code = 30420)

#Species for AI model comparison: pop (30060), nrf(30420), atf(10110), hal(10120), pcod(21720), atka(21921)
species.codes<-c(30420)
species.names<-c("Northern Rockfish")
survey = "AI"

survey variable specifications include the Eastern Bering Sea shelf survey "EBS_SHELF", Gulf of Alaska survey "GOA", and the Aleutian Islands survey "AI".

Next, we will define the Region, for spatial extrapolation.

if(survey=="GOA") { Region = 'Gulf_of_Alaska' }
if(survey=="EBS_SHELF") { Region = "Eastern_Bering_Sea" }
if(survey=="AI") { Region = "Aleutian_Islands" }

Spatial settings

The following settings define the spatial resolution for the model (defined by number of knots n_x), and whether to use a grid or mesh approximation through the Method variable.

Method = c("Grid", "Mesh", "Spherical_mesh")[2]
grid_size_km = 25
n_x = c(100, 250, 500, 1000, 2000)[2]
Kmeans_Config = list( "randomseed"=1, "nstart"=100, "iter.max"=1e3 )

Define strata limits

Here we can define the latitude and longitude designations for strata, if strata-specific indices are desired. We will not stratify in this example.

#Basic - Single Area
strata.limits = data.frame(STRATA = c("All_areas"))

VAST version settings

Define which version of VAST you will be using, i.e. which version of CPP code will be referenced for the TMB model.

Version = "VAST_v4_2_0"

Model settings

Bias correction

Define whether to implement epsilon bias correction estimator for nonlinear transformation of random effects, through the bias.correct variable. See Thorson and Kristensen (2016)

*Note: Bias correction is computationally intensive, especially for models with high spatial complexity i.e. high n_x.

bias.correct = FALSE

Spatio-temporal variation, autocorrelation, and overdispersion

The following settings define whether to include spatial and spatio-temporal variation (FieldConfig), whether its autocorre- lated (RhoConfig), and whether there�s overdispersion (OverdispersionConfig). In FieldConfig, Omega1 and Omega2 are ON/OFF = 1/0 switches for spatial random effects in the (1) positive catch rate and (2) encounter probability components of the delta model. Epsilon1 and Epsilon2 are ON/OFF switches for the spatio-temporal random effects. In RhoConfig, Beta1 and Beta2 are autocorrelation specifications for intercepts, while Epsilon1 and Epsilon2 are the same specifications for spatio-temporal random effects, for (1) positive catch rate and (2) encounter probability components of the delta model.

FieldConfig = c(Omega1 = 1, Epsilon1 = 1, Omega2 = 1, Epsilon2 = 1)
RhoConfig  = c(Beta1 = 0, Beta2 = 0, Epsilon1 = 0, Epsilon2 = 0)
OverdispersionConfig  = c(Delta1 = 0, Delta2 = 0)

Observation model settings

The ObsModel vector is used to specify the assumed observation model, where first element specifies the distribution for positive catch rates and second element specifies the functional form for encounter probabilities. Here we specify the conventional delta-model using logit-link for encounter probability and log-link for positive catch rates.

ObsModel = c(1,0)

Alternatives:

ObsModel Specification Distribution for Positive Catch Rates
ObsModel[1]=0 Normal
ObsModel[1]=1 Lognormal
ObsModel[1]=2 Gamma
ObsModel[1]=5 Negative binomial
ObsModel[1]=6 Conway-Maxwell-Poisson (likely to be very slow)
ObsModel[1]=7 Poisson (more numerically stable than negative-binomial)
ObsModel[1]=8 Compound-Poisson-Gamma, where the expected number of individuals is the 1st-component, the expected biomass per individual is the 2nd-component, and SigmaM is the variance in positive catches (likely to be very slow)
ObsModel[1]=9 Binned-Poisson (for use with REEF data, where 0=0 individual; 1=1 individual; 2=2:10 individuals; 3=>10 individuals)
ObsModel[1]=10 Tweedie distribution, where epected biomass (lambda) is the product of 1st-component and 2nd-component, variance scalar (phi) is the 1st component, and logis-SigmaM is the power

*See documentation for Data_Fn() within VAST for specification of ObsModel.

Save settings

DateFile is the folder that will hold my model outputs.

DateFile = paste0(getwd(), "/AI_VAST_output_hab_NRF/")

#delete previous output directories
unlink("AI_VAST_output_hab_NRF", recursive=TRUE)
#do.call(file.remove, list(list.files("AI_VAST_output_hab_NRF", full.names = TRUE)))

#Create directory
dir.create(DateFile, recursive=TRUE)

Specify model outputs

The following settings define what types of output we want to calculate.

Options = c(SD_site_density = 0
            , SD_site_logdensity = 0
            , Calculate_Range = 1
            , Calculate_evenness = 0
            , Calculate_effective_area = 1
            , Calculate_Cov_SE = 0
            , Calculate_Synchrony = 0
            , Calculate_Coherence = 0)

Prepare the data

Load RACE data

To create the input data files for VAST model, first we must load RACE survey data. In this case we have already downloaded flat files from RACEBASE using sql server. This step can also be accomplished using RODBC and sequel scripts. Two data files are necessary (1) haul data and (2) catch data.

Haul data

#haul = read.csv("\\\\AKC0SS-N086/RACE_Users/chris.rooper/Desktop/HAIP Project - Survey Modeling Methods/VAST/HISAdata/HISA_haul_sql.csv")

data("haul")

#for each column, how much data is missing
apply(haul, 2, function(x) sum(is.na(x)))
##          CRUISEJOIN            HAULJOIN 
##                   0                   0 
##              REGION              VESSEL 
##                   0                   0 
##              CRUISE                HAUL 
##                   0                   0 
##           HAUL_TYPE         PERFORMANCE 
##                   0                   0 
##          START_TIME            DURATION 
##                   0                   0 
##     DISTANCE_FISHED           NET_WIDTH 
##                   0                   0 
##        NET_MEASURED          NET_HEIGHT 
##                  79                  19 
##             STRATUM      START_LATITUDE 
##                   0                   0 
##        END_LATITUDE     START_LONGITUDE 
##                   0                   0 
##       END_LONGITUDE           STATIONID 
##                   0                   1 
##          GEAR_DEPTH        BOTTOM_DEPTH 
##                  57                   0 
##         BOTTOM_TYPE SURFACE_TEMPERATURE 
##               10461                 366 
##    GEAR_TEMPERATURE         WIRE_LENGTH 
##                 615                   0 
##                GEAR         ACCESSORIES 
##                   0                   0 
##           SUBSAMPLE      ABUNDANCE_HAUL 
##                   0                   0 
##           AUDITJOIN           LONGITUDE 
##                   0                   0 
##            LATITUDE 
##                   0
# List the unique cruise numbers
sort(unique(haul$CRUISE))
##  [1] 199101 199301 199309 199401 199601 199701
##  [7] 199901 200001 200101 200201 200301 200401
## [13] 200501 200601 200701 200901 201001 201101
## [19] 201201 201301 201401 201501 201601 201701

For habitat covariates we will use depth, temperature, invertebrate catch, slope, maximum tidal current (tmax) and bottom currents predicted by a ROMS model (Danielson et al. 2011). Depth, temperature, and invertebrate catch are all recorded at the time of the tow, the other variables are taken from raster layers created ala Laman et al. (2017). To do the extraction we first calculate the midpoint of each survey tow (accounting for its position behind the vessel) and then import the raster layers and extract the data for each haul at the midpoint of the tow. The raster layers can be found on https://github.com/rooperc4/HISAVAST/AI_rasters and https://github.com/rooperc4/HISAVAST/GOA_rasters. These files need to be copied to your working directory.

# create new columns for longitude and latitude and calculate the midpoint of the tow and
# spatially transpose them to Alaska Albers projection

haul.pos<-NetPosition(haul$START_LATITUDE, haul$END_LATITUDE, haul$START_LONGITUDE, haul$END_LONGITUDE, haul$WIRE_LENGTH, haul$BOTTOM_DEPTH)
haul$LONGITUDE<-(haul.pos[,3]+haul.pos[,4])/2
haul$LATITUDE<-(haul.pos[,1]+haul.pos[,2])/2
points.project <- project(cbind(haul$LONGITUDE,haul$LATITUDE), "+proj=aea +lat_1=55 +lat_2=65 +lat_0=50 +lon_0=-154 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")


# bring in environmental layers

AIslope<-raster("./AI_rasters/Slope")
GOAslope<-raster("./GOA_rasters/Slope")
AItmax<-raster("./AI_rasters/Tmax")
GOAtmax<-raster("./GOA_rasters/Tmax")
AIbcurrent<-raster("./AI_rasters/Bcurrent")
GOAbcurrent<-raster("./GOA_rasters/Bcurrent")
AIstack<-stack(AIslope,AItmax,AIbcurrent)
GOAstack<-stack(GOAslope,GOAtmax,GOAbcurrent)

#Extract the data at each haul midpoint

AIraster.data <- as.data.frame(raster::extract(AIstack, points.project))
GOAraster.data <- as.data.frame(raster::extract(GOAstack, points.project))
GOAraster.data <- cbind(haul$HAULJOIN, GOAraster.data)
colnames(GOAraster.data) <- c("HAULJOIN", "Slope", "Tmax", "Bcurrent")
GOAraster.data <- subset(GOAraster.data, is.na(GOAraster.data$Slope)==FALSE)
AIraster.data <- cbind(haul$HAULJOIN, AIraster.data)
colnames(AIraster.data) <- c("HAULJOIN", "Slope", "Tmax", "Bcurrent")
AIraster.data <- subset(AIraster.data, is.na(AIraster.data$Slope)==FALSE)
raster.data <- rbind(GOAraster.data, AIraster.data)

#remove duplicates that fell on both rasters
raster.data<-raster.data[!duplicated(raster.data$HAULJOIN),]

#merge the data with the existing haul information

haul.1<-merge(haul, raster.data, by = "HAULJOIN", all.x = TRUE)

#remove rows with NA for evironmental variables
haul.1 <- haul.1[!is.na(haul.1$GEAR_TEMPERATURE) & !is.na(haul.1$Slope) & !is.na(haul.1$Tmax) & !is.na(haul.1$BOTTOM_DEPTH), ]# 

#for each column, how much data is missing
apply(haul.1, 2, function(x) sum(is.na(x)))
##            HAULJOIN          CRUISEJOIN 
##                   0                   0 
##              REGION              VESSEL 
##                   0                   0 
##              CRUISE                HAUL 
##                   0                   0 
##           HAUL_TYPE         PERFORMANCE 
##                   0                   0 
##          START_TIME            DURATION 
##                   0                   0 
##     DISTANCE_FISHED           NET_WIDTH 
##                   0                   0 
##        NET_MEASURED          NET_HEIGHT 
##                  79                  18 
##             STRATUM      START_LATITUDE 
##                   0                   0 
##        END_LATITUDE     START_LONGITUDE 
##                   0                   0 
##       END_LONGITUDE           STATIONID 
##                   0                   1 
##          GEAR_DEPTH        BOTTOM_DEPTH 
##                   2                   0 
##         BOTTOM_TYPE SURFACE_TEMPERATURE 
##               10101                  46 
##    GEAR_TEMPERATURE         WIRE_LENGTH 
##                   0                   0 
##                GEAR         ACCESSORIES 
##                   0                   0 
##           SUBSAMPLE      ABUNDANCE_HAUL 
##                   0                   0 
##           AUDITJOIN           LONGITUDE 
##                   0                   0 
##            LATITUDE               Slope 
##                   0                   0 
##                Tmax            Bcurrent 
##                   0                   0

Lets see what haul.1 contains...

names(haul.1)
##  [1] "HAULJOIN"            "CRUISEJOIN"         
##  [3] "REGION"              "VESSEL"             
##  [5] "CRUISE"              "HAUL"               
##  [7] "HAUL_TYPE"           "PERFORMANCE"        
##  [9] "START_TIME"          "DURATION"           
## [11] "DISTANCE_FISHED"     "NET_WIDTH"          
## [13] "NET_MEASURED"        "NET_HEIGHT"         
## [15] "STRATUM"             "START_LATITUDE"     
## [17] "END_LATITUDE"        "START_LONGITUDE"    
## [19] "END_LONGITUDE"       "STATIONID"          
## [21] "GEAR_DEPTH"          "BOTTOM_DEPTH"       
## [23] "BOTTOM_TYPE"         "SURFACE_TEMPERATURE"
## [25] "GEAR_TEMPERATURE"    "WIRE_LENGTH"        
## [27] "GEAR"                "ACCESSORIES"        
## [29] "SUBSAMPLE"           "ABUNDANCE_HAUL"     
## [31] "AUDITJOIN"           "LONGITUDE"          
## [33] "LATITUDE"            "Slope"              
## [35] "Tmax"                "Bcurrent"

Limit haul dataset to only abundance hauls

haul.1 = haul.1[haul.1$ABUNDANCE_HAUL=='Y',]

Catch data

data("catch")
#catch = read.csv("//AKC0SS-N086/RACE_Users/chris.rooper/Desktop/HAIP Project - Survey Modeling Methods/VAST/HISADATA/HISA_catch_sql.csv")
#catch <- dplyr::filter(catch, CRUISE > 199101)
sort(unique(catch$CRUISE))
##  [1] 199101 199301 199309 199401 199601 199701
##  [7] 199901 200001 200101 200201 200301 200401
## [13] 200501 200601 200701 200901 201001 201101
## [19] 201201 201301 201401 201501 201601 201701

Lets see what catch contains...

names(catch)
##  [1] "CRUISEJOIN"   "HAULJOIN"     "CATCHJOIN"   
##  [4] "REGION"       "VESSEL"       "CRUISE"      
##  [7] "HAUL"         "SPECIES_CODE" "WEIGHT"      
## [10] "NUMBER_FISH"

Next we subset the catch records for the weight (kg) catch of the species of interest.

catch.1<-subset(catch,catch$SPECIES_CODE==species.codes)
catch.1<-data.frame(HAULJOIN=catch.1$HAULJOIN,WEIGHT=catch.1$WEIGHT)
head(catch.1)
##   HAULJOIN WEIGHT
## 1    31442  0.544
## 2    31444  0.907
## 3    31445  0.045
## 4    31448  8.165
## 5    31450  0.318
## 6    31454  0.363

A final habitat covariate we will use is the abundance of benthic invertebrates captured in each bottom trawl haul. Here we will collate the invertebrate data by species group from RACEBASE and sum the catches (kg) to obtain a total catch for invertebrate structure.

##############################################################################################
##############INVERTEBRATES###################################################################
catch.data<-catch
#black corals
black_coral<-subset(catch.data,catch.data$SPECIES_CODE>=41525&catch.data$SPECIES_CODE<=41553)
black_coral<-aggregate(black_coral$WEIGHT, by=list(black_coral$HAULJOIN), FUN=sum)
colnames(black_coral)<-c("HAULJOIN","black_coral")

#sea pens
penn<-subset(catch.data, catch.data$SPECIES_CODE>=42000&catch.data$SPECIES_CODE<=42021)
penn<-aggregate(penn$WEIGHT, by=list(penn$HAULJOIN), FUN=sum)
colnames(penn)<-c("HAULJOIN","penn")

#alcyonacea
alcyonacea<-subset(catch.data,(catch.data$SPECIES_CODE>=41000&catch.data$SPECIES_CODE<=41523)|
    (catch.data$SPECIES_CODE>=41570&catch.data$SPECIES_CODE<=41752)|
    (catch.data$SPECIES_CODE>=44065&catch.data$SPECIES_CODE<=44075)|
    (catch.data$SPECIES_CODE>=44083&catch.data$SPECIES_CODE<=44115))
alcyonacea<-aggregate(alcyonacea$WEIGHT, by=list(alcyonacea$HAULJOIN), FUN=sum)
colnames(alcyonacea)<-c("HAULJOIN","alcyonacea")

#Scleractinia
scleractinia<-subset(catch.data,catch.data$SPECIES_CODE>=44000&catch.data$SPECIES_CODE<=44023)
scleractinia<-aggregate(scleractinia$WEIGHT,by=list(scleractinia$HAULJOIN),FUN=sum)
colnames(scleractinia)<-c("HAULJOIN","scleractinia")


#Demosponges
demosponge<-subset(catch.data,(catch.data$SPECIES_CODE>=91000&catch.data$SPECIES_CODE<=91020)|
    (catch.data$SPECIES_CODE>=91038&catch.data$SPECIES_CODE<=91047)|
    (catch.data$SPECIES_CODE>=91049&catch.data$SPECIES_CODE<=91051)|
    (catch.data$SPECIES_CODE>=91054&catch.data$SPECIES_CODE<=91069)|
    (catch.data$SPECIES_CODE>=91071&catch.data$SPECIES_CODE<=91084)|catch.data$SPECIES_CODE==91086|
    (catch.data$SPECIES_CODE>=91088&catch.data$SPECIES_CODE<=91096)|
    (catch.data$SPECIES_CODE>=91098&catch.data$SPECIES_CODE<=91102)|
    (catch.data$SPECIES_CODE>=91105&catch.data$SPECIES_CODE<=91272)|
    (catch.data$SPECIES_CODE>=91704&catch.data$SPECIES_CODE<=91705)|
    (catch.data$SPECIES_CODE>=91995&catch.data$SPECIES_CODE<=91998)|
    (catch.data$SPECIES_CODE>=99981&catch.data$SPECIES_CODE<=99988))
demosponge<-aggregate(demosponge$WEIGHT,by=list(demosponge$HAULJOIN),FUN=sum)
colnames(demosponge)<-c("HAULJOIN","demosponge")

#Glass sponges
glass<-subset(catch.data,(catch.data$SPECIES_CODE>=91030&catch.data$SPECIES_CODE<=91020)|
    catch.data$SPECIES_CODE==91048|catch.data$SPECIES_CODE==91053|catch.data$SPECIES_CODE==91070|
    (catch.data$SPECIES_CODE>=91103&catch.data$SPECIES_CODE<=91104)|
    (catch.data$SPECIES_CODE>=91700&catch.data$SPECIES_CODE<=91701)|
    (catch.data$SPECIES_CODE>=91710&catch.data$SPECIES_CODE<=91725))
glass<-aggregate(glass$WEIGHT,by=list(glass$HAULJOIN),FUN=sum)
colnames(glass)<-c("HAULJOIN","glass")

invert_data<-data.frame(HAULJOIN=haul.1[,1])
invert_data<-merge(invert_data, black_coral, by="HAULJOIN", all.x=TRUE)
invert_data<-merge(invert_data, penn, by="HAULJOIN", all.x=TRUE)
invert_data<-merge(invert_data, alcyonacea, by="HAULJOIN", all.x=TRUE)
invert_data<-merge(invert_data, scleractinia, by="HAULJOIN", all.x=TRUE)
invert_data<-merge(invert_data, demosponge, by="HAULJOIN", all.x=TRUE)
invert_data<-merge(invert_data, glass, by="HAULJOIN", all.x=TRUE)
invert_data[is.na(invert_data)]<-0
invert_data$Coral<-invert_data$black_coral+invert_data$alcyonacea+invert_data$scleractinia
invert_data$Sponge<-invert_data$demosponge+invert_data$glass
invert_data$Penn<-invert_data$penn
# invert_data$Sponge[invert_data$Sponge>0]<-1
# invert_data$Coral[invert_data$Coral>0]<-1
# invert_data$Penn[invert_data$Penn>0]<-1
invert_data<-invert_data[,-(2:7)]

Inverts <- invert_data %>%
  mutate(Inverts = invert_data$Coral + invert_data$Sponge + invert_data$Penn)
Inverts <- Inverts[,c(1,5)]
#unique(Inverts$Inverts)

Join datasets

We need to join haul information to catch data, creating list catchhaul. Also need to zero fill the data for each haul with no catch of the specie sof interest.

catchhaul<-merge(haul.1,Inverts,by="HAULJOIN",all.x=TRUE)
catchhaul = merge(catchhaul,catch.1,by="HAULJOIN",all.x=TRUE)
head(catchhaul)
##   HAULJOIN CRUISEJOIN REGION VESSEL CRUISE HAUL
## 1   -17321       -715    GOA    143 201701  239
## 2   -17320       -715    GOA    143 201701  238
## 3   -17319       -715    GOA    143 201701  237
## 4   -17318       -715    GOA    143 201701  236
## 5   -17317       -715    GOA    143 201701  235
## 6   -17316       -715    GOA    143 201701  234
##   HAUL_TYPE PERFORMANCE          START_TIME
## 1         3        0.00 2017-07-23 06:56:50
## 2         3        0.00 2017-07-22 20:21:44
## 3         3        1.12 2017-07-22 17:34:16
## 4         3        0.00 2017-07-22 13:43:04
## 5         3        0.00 2017-07-22 12:19:32
## 6         3        0.00 2017-07-22 10:38:12
##   DURATION DISTANCE_FISHED NET_WIDTH NET_MEASURED
## 1    0.277           1.509    16.416            Y
## 2    0.273           1.476    18.788            Y
## 3    0.194           1.050    16.116            N
## 4    0.271           1.449    17.385            Y
## 5    0.265           1.450    17.463            Y
## 6    0.270           1.478    17.204            Y
##   NET_HEIGHT STRATUM START_LATITUDE END_LATITUDE
## 1      6.053      41       60.20687     60.20044
## 2      5.903     140       60.09291     60.10221
## 3      6.503      41       59.83016     59.82306
## 4      5.810     230       59.57379     59.57902
## 5      5.558     230       59.54180     59.54280
## 6      5.802     230       59.54084     59.52808
##   START_LONGITUDE END_LONGITUDE STATIONID
## 1       -145.6486     -145.6247   295-179
## 2       -146.9744     -146.9557   279-177
## 3       -146.5938     -146.6061   283-171
## 4       -147.0327     -147.0560   278-166
## 5       -147.0434     -147.0180   278-165
## 6       -147.1362     -147.1429   277-165
##   GEAR_DEPTH BOTTOM_DEPTH BOTTOM_TYPE
## 1         83           89          NA
## 2        151          157          NA
## 3         68           75          NA
## 4        207          213          NA
## 5        207          213          NA
## 6        210          216          NA
##   SURFACE_TEMPERATURE GEAR_TEMPERATURE
## 1                15.0              6.6
## 2                15.0              6.4
## 3                13.2              7.3
## 4                12.9              5.7
## 5                12.8              5.7
## 6                13.0              5.6
##   WIRE_LENGTH GEAR ACCESSORIES SUBSAMPLE
## 1         320  172         129         1
## 2         457  172         129         1
## 3         274  172         129         1
## 4         549  172         129         1
## 5         549  172         129         1
## 6         549  172         129         1
##   ABUNDANCE_HAUL AUDITJOIN LONGITUDE LATITUDE
## 1              Y    -17321 -145.6415 60.20497
## 2              Y    -17320 -146.9705 60.09484
## 3              Y    -17319 -146.5969 59.82840
## 4              Y    -17318 -147.0361 59.57456
## 5              Y    -17317 -147.0397 59.54195
## 6              Y    -17316 -147.1373 59.53885
##       Slope     Tmax    Bcurrent Inverts WEIGHT
## 1 0.3790110 18.31557 0.002913109       0     NA
## 2 1.0058699 43.77893 0.015023332       0     NA
## 3 0.2450727 54.69270 0.005993513       0     NA
## 4 0.1490565 31.91570 0.010534053       0     NA
## 5 0.1721571 31.50327 0.010364075       0     NA
## 6 0.1366786 30.55389 0.010191408       0     NA
catchhaul$WEIGHT[is.na(catchhaul$WEIGHT)]<-0

Calculate CPUE for invertebrate data and log transform invert data. Here we have estimated area swept in hectares.

catchhaul$AREA_SWEPT<-catchhaul$DISTANCE_FISHED*1000*catchhaul$NET_WIDTH/10000
catchhaul$Inverts<-catchhaul$Inverts/catchhaul$AREA_SWEPT
catchhaul$WEIGHT_CPUE<-catchhaul$WEIGHT/catchhaul$AREA_SWEPT
catchhaul$lnInverts<-log(catchhaul$Inverts + 0.5*min(subset(catchhaul$Inverts, catchhaul$Inverts>0)))

Attach year info

catchhaul$Year<-round(catchhaul$CRUISE/100,0)

Limit to survey of interest

We need to limit our dataset to only the survey of interest and add the common name for the species.

catchhaul<-catchhaul[catchhaul$REGION==survey,]
catchhaul$Common.Name<-species.names

Build Data_Geostat

Now, we will create the list Data_Geostat which is the input for the VAST model. Here I have renamed the dataset to match Curry's input data.

load.data<-catchhaul
Data_Geostat = NULL

Add elements to Data_Geostat list

If you are running for multiple species add the species name.

if(length(species.codes) > 1) {
  Data_Geostat$spp = load.data$Common.Name
}
Data_Geostat$Catch_KG = as.numeric(load.data$WEIGHT)
Data_Geostat$Year = as.integer(load.data$Year)
Data_Geostat$Vessel = "missing"
Data_Geostat$AreaSwept_km = as.numeric(load.data$AREA_SWEPT*.01)
Data_Geostat$Pass = 0

Define location of samples

Here we are using the corrected midpoint of the haul as the location of the samples. You could also use the start or end points.

  Data_Geostat$Lat = load.data$LATITUDE
  Data_Geostat$Lon = load.data$LONGITUDE

Finally, we must ensure this Data_Geostat is a proper data frame.

Data_Geostat = data.frame(Data_Geostat)

To double check lets see how Data_Geostat looks...

kable(head(Data_Geostat))
Catch\_KG Year Vessel AreaSwept\_km Pass Lat Lon
156.840 2016 missing 0.0251744 0 51.79667 177.6780
1.020 2016 missing 0.0250560 0 51.76567 177.7097
15.120 2016 missing 0.0273045 0 51.82745 177.6676
9.920 2016 missing 0.0233193 0 51.99458 177.6576
1.288 2016 missing 0.0206788 0 52.03140 177.6488
644.620 2016 missing 0.0269069 0 52.02819 177.8243
Create the extrapolation grid -----------------------------

We also generate the extrapolation grid appropriate for a given region. For new regions, we use Region="Other".

  • Note: We are not defining strata limits, but could do so based on latitude and longitude definitions.
Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = Region, 
    strata.limits = strata.limits)

Create spatial list

Next, generate the information used for conducting spatio-temporal parameter estimation, bundled in list Spatial_List.

library(SpatialDeltaGLMM)
Spatial_List = SpatialDeltaGLMM::Spatial_Information_Fn(grid_size_km = grid_size_km, 
    n_x = n_x, Method = Method, Lon = Data_Geostat[, 
        "Lon"], Lat = Data_Geostat[, "Lat"], Extrapolation_List = Extrapolation_List, 
    randomseed = Kmeans_Config[["randomseed"]], nstart = Kmeans_Config[["nstart"]], 
    iter.max = Kmeans_Config[["iter.max"]], DirPath = DateFile, 
    Save_Results = TRUE)

Update Data_Geostat with knot references

We then associate each of our haul observations with its appropriate knot.

Data_Geostat = cbind(Data_Geostat, knot_i = Spatial_List$knot_i)

Now we add in covariates in a 3 dimensional matrix with the mean value for each associated knot. This section can be skipped if habitat covariates are not used.

xvars<-c("lnInverts","Slope","Tmax","GEAR_TEMPERATURE","BOTTOM_DEPTH")
yrs<-seq(min(Data_Geostat[,"Year"]),max(Data_Geostat[,"Year"]),1)
yrs2<-unique(Data_Geostat$Year)
yrs<-subset(yrs,!(yrs%in%yrs2))
knots2<-unique(Data_Geostat$knot_i)
xes<-data.frame(Year=load.data$Year,knot_i=Spatial_List$knot_i,lnInverts=load.data$lnInverts,Slope=load.data$Slope,Tmax=load.data$Tmax,GEAR_TEMPERATURE=load.data$GEAR_TEMPERATURE,BOTTOM_DEPTH=load.data$BOTTOM_DEPTH)
xes2<-data.frame(Year=rep(yrs, each=length(knots2)),knot_i=knots2,lnInverts=mean(load.data$lnInverts),Slope=mean(load.data$Slope),Tmax=mean(load.data$Tmax),GEAR_TEMPERATURE=mean(load.data$GEAR_TEMPERATURE),BOTTOM_DEPTH=mean(load.data$BOTTOM_DEPTH))
xes<-rbind(xes,xes2)
xes<-xes[order(xes$Year,xes$knot_i),]
x_matrix<-array(dim=c(length(unique(Spatial_List$knot_i)),length(unique(xes$Year)),length(xvars)))

x_matrix[,,1]<-with(xes,tapply(lnInverts,list(knot_i,Year),mean,na.rm=TRUE))
x_matrix[,,1][is.na(x_matrix[,,1])]<-mean(x_matrix[,,1],na.rm=TRUE)
x_matrix[,,2]<-with(xes,tapply(Slope,list(knot_i,Year),mean,na.rm=TRUE))
x_matrix[,,2][is.na(x_matrix[,,2])]<-mean(x_matrix[,,2],na.rm=TRUE)
x_matrix[,,3]<-with(xes,tapply(Tmax,list(knot_i,Year),mean,na.rm=TRUE))
x_matrix[,,3][is.na(x_matrix[,,3])]<-mean(x_matrix[,,3],na.rm=TRUE)
x_matrix[,,4]<-with(xes,tapply(GEAR_TEMPERATURE,list(knot_i,Year),mean,na.rm=TRUE))
x_matrix[,,4][is.na(x_matrix[,,4])]<-mean(x_matrix[,,4],na.rm=TRUE)
x_matrix[,,5]<-with(xes,tapply(BOTTOM_DEPTH,list(knot_i,Year),mean,na.rm=TRUE))
x_matrix[,,5][is.na(x_matrix[,,5])]<-mean(x_matrix[,,5],na.rm=TRUE)


Data_Geostat<-Data_Geostat[order(Data_Geostat$Year,Data_Geostat$knot_i),]
#head(Data_Geostat)

Build and run model

Build model

To estimate parameters, we first build a list of data-inputs used for parameter estimation. Data_Fn has some simple checks for buggy inputs, but also please read the help file ?Data_Fn.

# SINGLE SPECIES
TmbData = VAST::Data_Fn(Version = Version, FieldConfig = FieldConfig, 
    OverdispersionConfig = OverdispersionConfig, RhoConfig = RhoConfig, 
    ObsModel = ObsModel, c_i = rep(0, nrow(Data_Geostat)), 
    b_i = Data_Geostat[, "Catch_KG"], a_i = Data_Geostat[, 
        "AreaSwept_km"], X_xtp = x_matrix, v_i = as.numeric(Data_Geostat[, 
        "Vessel"]) - 1, s_i = Data_Geostat[, "knot_i"] - 
        1, t_i = Data_Geostat[, "Year"], a_xl = Spatial_List$a_xl, 
    MeshList = Spatial_List$MeshList, GridList = Spatial_List$GridList, 
    Method = Spatial_List$Method, Options = Options)
##   Omega1 Epsilon1   Omega2 Epsilon2 
##        1        1        1        1 
## Delta1 Delta2 
##     -1     -1

Build TMB object

Next, we build and compile the TMB object for estimation.

  • Note: Compilation may take some time... be patient.
TmbList = VAST::Build_TMB_Fn(TmbData = TmbData, RunDir = DateFile, 
    Version = Version, RhoConfig = RhoConfig, loc_x = Spatial_List$loc_x, 
    Method = Method)
Obj = TmbList[["Obj"]]

Do estimation

Fit VAST model to the data by optimizing the TMB function.

Opt = TMBhelper::Optimize(obj = Obj, lower = TmbList[["Lower"]]
                          , upper = TmbList[["Upper"]], getsd = TRUE, savedir = DateFile
                          , bias.correct = bias.correct, newtonsteps = 2)
## Warning in nlminb(start = startpar, objective =
## fn, gradient = gr, control = control, : NA/NaN
## function evaluation

## Warning in nlminb(start = startpar, objective =
## fn, gradient = gr, control = control, : NA/NaN
## function evaluation

Save output

Save outputs from estimation

Report = Obj$report()

Save = list("Opt"=Opt, "Report"=Report, "ParHat"=Obj$env$parList(Opt$par), 
            "TmbData"=TmbData)

save(Save, file=paste0(DateFile,"Save.RData"))

Diagnostic plots

We first apply a set of standard model diagnostics to confirm that the model is reasonable and deserves further attention. If any of these do not look reasonable, the model output should not be interpreted or used.

Plot data

It is always good practice to conduct exploratory analysis of data. Here, I visualize the spatial distribution of data. Spatio-temporal models involve the assumption that the probability of sampling a given location is statistically independent of the probability distribution for the response at that location. So if sampling "follows" changes in density, then the model is probably not appropriate!

SpatialDeltaGLMM::Plot_data_and_knots(Extrapolation_List = Extrapolation_List, 
    Spatial_List = Spatial_List, Data_Geostat = Data_Geostat, 
    PlotDir = DateFile)

Spatial extent and location of knots

Spatial distribution of catch-rate data

Convergence

Here we print the diagnostics generated during parameter estimation, and confirm that (1) no parameter is hitting an upper or lower bound and (2) the final gradient for each fixed-effect is close to zero. For explanation of parameters, please see ?Data_Fn.

pander::pandoc.table( Opt$diagnostics[,c('Param','Lower','MLE','Upper','final_gradient')] )
Param Lower MLE Upper final_gradient
ln_H_input -50 0.08442 50 -1.133e-09
ln_H_input -50 0.1328 50 4.222e-10
beta1_ct -50 3.664 50 1.38e-12
beta1_ct -50 2.787 50 -1.476e-12
beta1_ct -50 3.202 50 -3.597e-13
beta1_ct -50 2.705 50 6.994e-14
beta1_ct -50 3.029 50 -2.162e-12
beta1_ct -50 3.745 50 6.615e-12
beta1_ct -50 3.58 50 3.47e-12
beta1_ct -50 3.498 50 3.333e-12
beta1_ct -50 3.352 50 -2.768e-12
beta1_ct -50 3.845 50 5.859e-12
beta1_ct -50 4.329 50 2.986e-12
gamma1_ctp -50 0.08158 50 7.277e-11
gamma1_ctp -50 0.1091 50 1.996e-10
gamma1_ctp -50 -0.001501 50 1.019e-08
gamma1_ctp -50 -0.4437 50 5.356e-11
gamma1_ctp -50 -0.01119 50 3.873e-08
L_omega1_z -50 2.259 50 1.722e-10
L_epsilon1_z -50 -0.6683 50 -5.447e-11
logkappa1 -6.333 -3.068 2.105 -2.971e-10
beta2_ct -50 10.55 50 8.325e-15
beta2_ct -50 10.75 50 -3.43e-14
beta2_ct -50 11 50 -1.022e-13
beta2_ct -50 11.08 50 -6.964e-15
beta2_ct -50 11.18 50 -8.826e-14
beta2_ct -50 11.77 50 -1.052e-14
beta2_ct -50 11.45 50 -1.034e-13
beta2_ct -50 11.62 50 -3.96e-14
beta2_ct -50 11.28 50 9.171e-16
beta2_ct -50 12.31 50 -2.687e-14
beta2_ct -50 12.18 50 -9.266e-14
gamma2_ctp -50 0.08812 50 -1.214e-12
gamma2_ctp -50 0.03114 50 -1.917e-12
gamma2_ctp -50 -0.00349 50 -1.758e-11
gamma2_ctp -50 -0.3906 50 -2.242e-12
gamma2_ctp -50 -0.01092 50 -1.058e-10
L_omega2_z -50 2.375 50 -1.651e-13
L_epsilon2_z -50 4.993e-15 50 2.958e-14
logkappa2 -6.333 -3.064 2.105 1.825e-12
logSigmaM -50 0.6972 10 2.951e-12

Diagnostics for encounter-probability component

Next, we check whether observed encounter frequencies for either low or high probability samples are within the 95% predictive interval for predicted encounter probability

Enc_prob = SpatialDeltaGLMM::Check_encounter_prob(Report = Report, 
    Data_Geostat = Data_Geostat, DirName = DateFile)

Expectated probability and observed frequency of encounter for "encounter probability" component

Diagnostics for positive-catch-rate component

We can visualize fit to residuals of catch-rates given encounters using a Q-Q plot. A good Q-Q plot will have residuals along the one-to-one line.

  • Note: In this plot, the red line should fall along the 1:1 line.
Q = SpatialDeltaGLMM::QQ_Fn(TmbData = TmbData, Report = Report, 
    FileName_PP = jpeg(paste0(DateFile, "Posterior_Predictive.jpg")), 
    FileName_Phist = jpeg(paste0(DateFile, "Posterior_Predictive_Histogram.jpg")), 
    FileName_QQ = jpeg(paste0(DateFile, "Q-Q_plot.jpg")), 
    FileName_Qhist = jpeg(paste0(DateFile, "QQ_hist.jpg")))

Quantile-quantile plot indicating residuals for "positive catch rate" component

Diagnostics for plotting residuals on a map

Finally, we visualize residuals on a map. To do so, we first define years to plot and generate plotting inputs. useful plots by first determining which years to plot (Years2Include), and labels for each plotted year (Year_Set). Some general insights:

  • MapDetails_Fn - Tries to automatically detect size of plots to do, determine what states to plot nearby.
  • Year_Set - Range of years sampled (bookeeping)
  • Years2Include - Years with surveys (bookeeping)
# Get region-specific settings for plots
MapDetails_List = SpatialDeltaGLMM::MapDetails_Fn( "Region" = Region,
                                                   "NN_Extrap" = Spatial_List$PolygonList$NN_Extrap,
                                                   "Extrapolation_List" = Extrapolation_List )
# Decide which years to plot
Year_Set = seq(min(Data_Geostat[,'Year']),max(Data_Geostat[,'Year']))
Years2Include = which( Year_Set %in% sort(unique(Data_Geostat[,'Year'])))

We then plot Pearson residuals. If there are visible patterns (areas with consistently positive or negative residuals accross or within years) then this is an indication of the model "overshrinking" results towards the intercept, and model results should then be treated with caution.

SpatialDeltaGLMM:::plot_residuals(Lat_i = Data_Geostat[, 
    "Lat"], Lon_i = Data_Geostat[, "Lon"], TmbData = TmbData, 
    Report = Report, Q = Q, savedir = DateFile, MappingDetails = MapDetails_List[["MappingDetails"]], 
    PlotDF = MapDetails_List[["PlotDF"]], MapSizeRatio = MapDetails_List[["MapSizeRatio"]], 
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]], 
    FileName = DateFile, Year_Set = Year_Set, Rotate = MapDetails_List[["Rotate"]], 
    Cex = MapDetails_List[["Cex"]], Legend = MapDetails_List[["Legend"]], 
    zone = MapDetails_List[["Zone"]], mar = c(0, 0, 
        2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8)

Encounter Probability Residuals

Pearson residuals for encounter-probability by knot

Catch Rate Residuals

Pearson residuals for catch rate by knot

Model selection

To select among models, we recommend using the Akaike Information Criterion, AIC, via Opt$AIC= 1.9801414\times 10^{4}.

Model output

Last but not least, we generate pre-defined plots for visualizing results

Direction of "geometric anisotropy"

We can visualize which direction has faster or slower decorrelation (termed "geometric anisotropy")

SpatialDeltaGLMM::PlotAniso_Fn(FileName = paste0(DateFile, 
    "Aniso.png"), Report = Report, TmbData = TmbData)

Decorrelation distance for different directions

Density surface for each year

We can visualize many types of output from the model. Here I only show predicted log density, but other options are obtained via other integers passed to plot_set as described in ?PlotResultsOnMap_Fn

SpatialDeltaGLMM::PlotResultsOnMap_Fn(plot_set = c(3), 
    MappingDetails = MapDetails_List[["MappingDetails"]], 
    Report = Report, Sdreport = Opt$SD, PlotDF = MapDetails_List[["PlotDF"]], 
    MapSizeRatio = MapDetails_List[["MapSizeRatio"]], 
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]], 
    FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include, 
    Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]], 
    Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]], 
    mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8, 
    plot_legend_fig = FALSE)

Density maps for each year

Encounter probability surface for each year

SpatialDeltaGLMM::PlotResultsOnMap_Fn(plot_set = c(1), 
    MappingDetails = MapDetails_List[["MappingDetails"]], 
    Report = Report, Sdreport = Opt$SD, PlotDF = MapDetails_List[["PlotDF"]], 
    MapSizeRatio = MapDetails_List[["MapSizeRatio"]], 
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]], 
    FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include, 
    Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]], 
    Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]], 
    mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8, 
    plot_legend_fig = FALSE)

Encounter probability maps for each year

Positive catch rate surface for each year

SpatialDeltaGLMM::PlotResultsOnMap_Fn(plot_set = c(2), 
    MappingDetails = MapDetails_List[["MappingDetails"]], 
    Report = Report, Sdreport = Opt$SD, PlotDF = MapDetails_List[["PlotDF"]], 
    MapSizeRatio = MapDetails_List[["MapSizeRatio"]], 
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]], 
    FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include, 
    Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]], 
    Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]], 
    mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8, 
    plot_legend_fig = FALSE)

Positive catch rate maps for each year

Index of abundance

The index of abundance is generally most useful for stock assessment models.

Index = SpatialDeltaGLMM::PlotIndex_Fn(DirName = DateFile, 
    TmbData = TmbData, Sdreport = Opt[["SD"]], Year_Set = Year_Set, 
    Years2Include = Years2Include, strata_names = strata.limits[, 
        1], use_biascorr = TRUE)
pander::pandoc.table(Index$Table[, c("Year", "Fleet", 
    "Estimate_metric_tons", "SD_log", "SD_mt")])
Year Fleet Estimate_metric_tons SD_log SD_mt
1991 All_areas 73250 0.4514 33067
1992 All_areas 27.59 1.404 38.74
1993 All_areas 27.59 1.404 38.74
1994 All_areas 103724 0.243 25208
1995 All_areas 27.59 1.404 38.74
1996 All_areas 27.59 1.404 38.74
1997 All_areas 134136 0.2353 31564
1998 All_areas 27.59 1.404 38.74
1999 All_areas 27.59 1.404 38.74
2000 All_areas 235746 0.2443 57588
2001 All_areas 27.59 1.404 38.74
2002 All_areas 266665 0.229 61073
2003 All_areas 27.59 1.404 38.74
2004 All_areas 387903 0.2077 80563
2005 All_areas 27.59 1.404 38.74
2006 All_areas 355795 0.2298 81763
2007 All_areas 27.59 1.404 38.74
2008 All_areas 27.59 1.404 38.74
2009 All_areas 27.59 1.404 38.74
2010 All_areas 369524 0.1969 72747
2011 All_areas 27.59 1.404 38.74
2012 All_areas 288712 0.2081 60075
2013 All_areas 27.59 1.404 38.74
2014 All_areas 549317 0.188 103258
2015 All_areas 27.59 1.404 38.74
2016 All_areas 495813 0.1943 96343

Index of abundance plus/minus 1 standard error


Comparing geostatistical and design-based indices

A logical next question is: How do these model-based biomass indices from VAST compare with the design-based indices we have used in the past? To answer this question we will calculate the design-based estimates for these same survey data. But first, we need a simple way to extract the VAST index..

Extracting VAST index

To return the model-based index values directly we can use a function called get_VAST_index() from the /R folder. get_VAST_index() is a simple function to retreive VAST index value and variance estimates.

vast_est = get_VAST_index(TmbData = TmbData, Sdreport = Opt[["SD"]], bias.correct = bias.correct, Data_Geostat = Data_Geostat)
#Limit to years with observations
vast_est = vast_est[Years2Include,]

Calculate design-based estimate

To calculate the design-based estimate, we use the functions from the GLMGAMRF package (installed from https://github.com/rooperc/GLMGAMRF). This package also contains data for strata areas for the GOA and AI.

library(GLMGAMRF)
library(ggplot2)

Design.data<-get_strata_area(load.data,"STRATUM","AI")
Design.data<-subset(Design.data,Design.data$STRATUM>0)
design.index = Stratified_CPUE(Design.data$WEIGHT_CPUE/.01,Design.data$Year,Design.data$STRATUM,Design.data$AREA_KM2,"AI")


pander::pandoc.table(design.index,row.names=FALSE,digits=4,caption="Survey abundance index design-based estimators")
## 
## ------------------------------------------------------------------
##  Year    Biomass       Var         SE       Lower_CI    Upper_CI  
## ------ ----------- ----------- ----------- ----------- -----------
##  1991   258694388   2.296e+16   151533703   -46701723   564090500 
## 
##  1994    1.1e+08    4.048e+15   63623434    -18230235   238218977 
## 
##  1997   87383310    7.303e+14   27023320    32921387    141845233 
## 
##  2000   206120907   3.925e+15   62649666    79858802    332383011 
## 
##  2002   178285140   2.268e+15   47626482    82300273    274270007 
## 
##  2004   194815635   1.833e+15   42808593    108540583   281090686 
## 
##  2006   219290533   2.833e+15   53227934    1.12e+08    326564385 
## 
##  2010   220211326   2.373e+15   48709824    1.22e+08    318379524 
## 
##  2012   2.99e+08    2.317e+16   152211873   -7742811    605782935 
## 
##  2014   478573501   2.245e+16   149817434   176636302   780510700 
## 
##  2016   253626149   2.179e+15   46679074    159550657   347701640 
## ------------------------------------------------------------------
## 
## Table: Survey abundance index design-based estimators
p<-ggplot(design.index,aes(x=Year,y=Biomass))+geom_line()+geom_point()+
  geom_ribbon(aes(ymin=Lower_CI, ymax=Upper_CI),
              alpha=0.2)+xlab("Year")+ylab("Index of abundance")+scale_x_continuous(breaks=design.index$Year)+ggtitle(paste("Survey index for ",species.names, " (design based with CI's)",sep=""))
p

colnames(design.index)[2]<-"Estimate_metric_tons"
design.index[,2]<-as.numeric(design.index[,2]/1000)
design.index[,4]<-as.numeric(design.index[,4]/1000)
p1<-ggplot(NULL, aes(x = Year, y = Estimate_metric_tons))+
  geom_line(data = vast_est, aes(x = Year, y = Estimate_metric_tons, color = "red"))+
  geom_point(data = vast_est, aes(x = Year, y = Estimate_metric_tons, color = "red"))+
  geom_ribbon(data = vast_est, aes(ymin = Estimate_metric_tons - 2*SD_mt, ymax = Estimate_metric_tons + 2*SD_mt), fill = "red", alpha=0.2)+
  geom_ribbon(data = vast_est, aes(ymin = Estimate_metric_tons - 1*SD_mt, ymax = Estimate_metric_tons + 1*SD_mt), fill = "red", alpha=0.1) +
  
  geom_line(data = design.index, aes(x = Year, y = Estimate_metric_tons), color = "blue")+
  geom_point(data = design.index, aes(x = Year, y = Estimate_metric_tons, color = "blue"))+
  geom_ribbon(data = design.index, aes(ymin = Estimate_metric_tons - 2*SE, ymax = Estimate_metric_tons + 2*SE), fill = "blue", alpha=0.2)+
  geom_ribbon(data = design.index, aes(ymin = Estimate_metric_tons - 1*SE, ymax = Estimate_metric_tons + 1*SE), fill = "blue", alpha=0.1) +

  scale_y_continuous(name = "Estimate_metric_tons", labels = scales::comma) +
  scale_x_continuous(breaks = vast_est$Year)+
  theme(legend.position = c(0.75, 1.05), legend.direction = "horizontal")+#, legend.margin=margin(t = 0, unit='cm'))+
  scale_color_manual(name = "", guide = "legend", values = c("blue", "red"), labels = c("Design Based", "VAST")) +
  scale_fill_manual(values = c("blue", "red")) +
  theme(panel.background = element_rect(fill = "white", colour = "grey50")) +
  theme(panel.grid.major = element_line(colour = "lightgrey", linetype = "dashed")) +
  ggtitle(paste("Index comparison for NRF Biomass",sep = ""))
  
p1

About

VAST Model with Habitat Covariates for use in Alaska Survey Modeling

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published