Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Terra #86

Open
wants to merge 11 commits into
base: master
Choose a base branch
from
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,8 @@ Imports:
tibble,
fasterize,
sf,
Rcpp
Rcpp,
terra
URL: https://ropensci.github.io/NLMR/
BugReports: https://github.com/ropensci/NLMR/issues/
Suggests:
Expand Down
38 changes: 15 additions & 23 deletions R/nlm_percolation.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
#' Resolution of the raster.
#' @param prob [\code{numerical(1)}]\cr
#' Probability value for setting a cell to 1.
#' @param crs [\code{character(1)}]\cr
#' Coordinate reference system for new raster. If blank, defaults to WGS 84.
#'
#' @details
#' The simulation of a random percolation map is accomplished in two steps:
Expand All @@ -22,7 +24,7 @@
#' TRUE - if it is higher the cell is set to FALSE.}
#' }
#'
#' @return RasterLayer
#' @return SpatRaster
#'
#' @examples
#' # simulate percolation model
Expand All @@ -49,35 +51,25 @@
nlm_percolation <- function(ncol,
nrow,
resolution = 1,
prob = 0.5) {
prob = 0.5,
crs = "+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs") {

# Check function arguments ----
checkmate::assert_count(ncol, positive = TRUE)
checkmate::assert_count(nrow, positive = TRUE)
checkmate::assert_numeric(resolution)
checkmate::assert_true(prob <= 1, na.ok = FALSE)
checkmate::assert_true(prob >= 0, na.ok = FALSE)

percolation_matrix <- matrix(NA, nrow = nrow, ncol = ncol)

percolation_matrix[] <- vapply(
percolation_matrix,
function(x) {
ifelse(stats::runif(1, 0, 1) < prob, TRUE, FALSE)
},
logical(1)
)

percolation_raster <-
raster::raster(percolation_matrix)

# specify resolution ----
raster::extent(percolation_raster) <- c(
0,
ncol(percolation_raster) * resolution,
0,
nrow(percolation_raster) * resolution
)

percolation_raster = terra::rast(nrows = nrow, ncols = ncol, nlyrs=1,
resolution = resolution,
extent = c(0, ncol * resolution,
0, nrow * resolution),
crs = crs,
vals = sample(c(0,1),
size = ncol * nrow,
replace = T,
prob = c(1-prob, prob)))

return(percolation_raster)
}
42 changes: 24 additions & 18 deletions R/nlm_randomcluster.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,10 @@
#' This directly controls the number of types via the given length.
#' @param rescale [\code{logical(1)}]\cr
#' If \code{TRUE} (default), the values are rescaled between 0-1.
#' @param crs [\code{character(1)}]\cr
#' The crs for the new raster. If blank, defaults to WGS 84.
#'
#' @return Raster with random values ranging from 0-1.
#' @return SpatRaster with random values ranging from 0-1.
#'
#' @details
#' This is a direct implementation of steps A - D of the modified random clusters algorithm
Expand Down Expand Up @@ -52,7 +54,8 @@ nlm_randomcluster <- function(ncol, nrow,
p,
ai = c(0.5, 0.5),
neighbourhood = 4,
rescale = TRUE) {
rescale = TRUE,
crs = "+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs") {

# Check function arguments ----
checkmate::assert_count(ncol, positive = TRUE)
Expand All @@ -65,26 +68,29 @@ nlm_randomcluster <- function(ncol, nrow,
checkmate::assert_logical(rescale)

# Step A - Create percolation map
ranclumap <- nlm_percolation(ncol, nrow, p, resolution = resolution)
ranclumap <- nlm_percolation(ncol, nrow, p, resolution = resolution, crs = crs)

# Step B - Cluster identification (clustering of adjoining pixels)
ranclumap <- raster::clump(ranclumap, direction = neighbourhood, gaps = FALSE)

ranclumap <- terra::patches(x = ranclumap, directions = neighbourhood, zeroAsNA = T)
#terra::values(ranclumap)[is.na(terra::values(ranclumap))] <- 0

# Step C - Cluster type assignation
# number of different cluster
numclu <- max(raster::values(ranclumap), na.rm = TRUE)
numclu <- length(unique(ranclumap[][!is.na(ranclumap[])]))
# assign to each cluster nr a new category given by Ai
clutyp <- sample(seq_along(ai), numclu, replace = TRUE, prob = ai)
# write back new category nr
raster::values(ranclumap) <- clutyp[raster::values(ranclumap)]
class_df <- data.frame('is' = unique(ranclumap[][!is.na(ranclumap[])]),
'becomes' = clutyp)
ranclumap <- terra::classify(ranclumap, rcl = class_df, include.lowest=T)

# Step D - Filling the map
# helperfuction to choose values
fillit <- function(cid) {
# get neighbour cells
nbrs <- raster::adjacent(ranclumap, cid, directions = 8, pairs = FALSE)
nbrs <- terra::adjacent(ranclumap, cid, directions = 8, pairs = FALSE)
# count neighbour values (exclude NA see Saura 2000 paper)
vals <- table(raster::values(ranclumap)[nbrs])
vals <- table(terra::values(ranclumap)[nbrs])
# check if everything is NA
if (!length(vals)) {
# be a rebel get your own value
Expand All @@ -103,24 +109,24 @@ nlm_randomcluster <- function(ncol, nrow,

# identify unfilled cells
gaps <- dplyr::rowwise(tibble::tibble(
ctf = (1:(ncol * nrow))[is.na(raster::values(ranclumap))]
ctf = (1:(ncol * nrow))[is.na(terra::values(ranclumap))]
))
# get values for the gaps
gaps <- dplyr::mutate(gaps, val = fillit(ctf))
# feed it back in the map
raster::values(ranclumap)[gaps$ctf] <- gaps$val
terra::values(ranclumap)[gaps$ctf] <- gaps$val

# specify resolution ----
raster::extent(ranclumap) <- c(
0,
ncol(ranclumap) * resolution,
0,
nrow(ranclumap) * resolution
)
# raster::extent(ranclumap) <- c(
# 0,
# ncol(ranclumap) * resolution,
# 0,
# nrow(ranclumap) * resolution
# )

# Rescale values to 0-1 ----
if (rescale == TRUE) {
ranclumap <- util_rescale(ranclumap)
ranclumap <- ranclumap / max(ranclumap[])
}

return(ranclumap)
Expand Down
8 changes: 4 additions & 4 deletions tests/testthat.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
library(testthat)
library(NLMR)
test_check("NLMR")
library(testthat)
library(NLMR)

test_check("NLMR")
44 changes: 22 additions & 22 deletions tests/testthat/test_percolation.R
Original file line number Diff line number Diff line change
@@ -1,22 +1,22 @@
# nolint start
context("nlm_percolation")
percolation <- nlm_percolation(ncol = 9, nrow = 12, prob = 0.5)
test_that("nlm_percolation behaves like it should", {
expect_that(percolation , is_a("RasterLayer"))
})
test_that("nlm_percolation produces the right number of rows", {
expect_equal(percolation@nrows, 12)
})
test_that("nlm_percolation produces the right number of columns", {
expect_equal(percolation@ncols, 9)
})
test_that("nlm_percolation produces the right number of columns", {
expect_equal(length(unique(percolation@data@values)), 2)
})
# nolint end
# nolint start
context("nlm_percolation")

percolation <- nlm_percolation(ncol = 9, nrow = 12, prob = 0.5)

test_that("nlm_percolation behaves like it should", {
expect_that(percolation , is_a("SpatRaster"))
})

test_that("nlm_percolation produces the right number of rows", {
expect_equal(terra::nrow(percolation), 12)
})

test_that("nlm_percolation produces the right number of columns", {
expect_equal(terra::ncol(percolation), 9)
})

test_that("nlm_percolation produces the right number of columns", {
expect_equal(length(unique(terra::values(percolation))), 2)
})

# nolint end
57 changes: 38 additions & 19 deletions tests/testthat/test_randomcluster.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,38 @@
# nolint start
context("nlm_randomcluster")

suppressWarnings(random_cluster <- nlm_randomcluster(ncol = 40, nrow = 30,
neighbourhood = 4, p = 0.4))

test_that("nlm_randomcluster behaves like it should", {
expect_that(random_cluster , is_a("RasterLayer"))
})

test_that("nlm_randomcluster produces the right number of rows", {
expect_equal(random_cluster@nrows, 30)
})

test_that("nlm_randomcluster produces the right number of columns", {
expect_equal(random_cluster@ncols, 40)
})

# nolint end
# nolint start
context("nlm_randomcluster")

suppressWarnings(random_cluster <- nlm_randomcluster(ncol = 300, nrow = 250,
neighbourhood = 4, p = 0.4, ai = c(0.1, 0.3, 0.6),
rescale = F))

test_that("nlm_randomcluster behaves like it should", {
expect_that(random_cluster , is_a("SpatRaster"))
})

test_that("nlm_randomcluster produces the right number of rows", {
expect_equal(terra::nrow(random_cluster), 250)
})

test_that("nlm_randomcluster produces the right number of columns", {
expect_equal(terra::ncol(random_cluster), 300)
})

test_that("nlm_randomcluster produces expected values", {
expect_equal(length(unique(terra::values(random_cluster))), 3)
})

test_that("nlm_randomcluster produces proportions within 0.05 of expected", {
expect_equal(terra::freq(random_cluster)[,3][1] / length(terra::values(random_cluster)),
0.1, tolerance = 0.05)
})

test_that("nlm_randomcluster produces proportions within 0.05 of expected", {
expect_equal(terra::freq(random_cluster)[,3][2] / length(terra::values(random_cluster)),
0.3, tolerance = 0.05)
})

test_that("nlm_randomcluster produces proportions within 0.05 of expected", {
expect_equal(terra::freq(random_cluster)[,3][3] / length(terra::values(random_cluster)),
0.6, tolerance = 0.05)
})
# nolint end