skimr
provides a frictionless approach to summary statistics which
conforms to the principle of least
surprise,
displaying summary statistics the user can skim quickly to understand
their data. It handles different data types and returns a skim_df
object which can be included in a pipeline or displayed nicely for the
human reader.
Note: skimr
version 2 has major changes when skimr is used
programmatically. Upgraders should review this document, the release
notes and vignettes carefully.
The current released version of skimr
can be installed from CRAN. If
you wish to install the current build of the next release you can do so
using the following:
# install.packages("devtools")
devtools::install_github("ropensci/skimr")
The APIs for this branch should be considered reasonably stable but still subject to change if an issue is discovered.
To install the version with the most recent changes that have not yet been incorporated in the main branch (and may not be):
devtools::install_github("ropensci/skimr", ref = "develop")
Do not rely on APIs from the develop branch, as they are likely to change.
skimr
:
- Provides a larger set of statistics than
summary()
, including missing, complete, n, and sd. - reports each data types separately
- handles dates, logicals, and a variety of other types
- supports spark-bar and spark-line based on the pillar package.
skim(chickwts)
## ── Data Summary ────────────────────────
## Values
## Name chickwts
## Number of rows 71
## Number of columns 2
## _______________________
## Column type frequency:
## factor 1
## numeric 1
## ________________________
## Group variables None
##
## ── Variable type: factor ───────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate ordered n_unique top_counts
## 1 feed 0 1 FALSE 6 soy: 14, cas: 12, lin: 12, sun: 12
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 weight 0 1 261. 78.1 108 204. 258 324. 423 ▆▆▇▇▃
skim(iris)
## ── Data Summary ────────────────────────
## Values
## Name iris
## Number of rows 150
## Number of columns 5
## _______________________
## Column type frequency:
## factor 1
## numeric 4
## ________________________
## Group variables None
##
## ── Variable type: factor ───────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate ordered n_unique top_counts
## 1 Species 0 1 FALSE 3 set: 50, ver: 50, vir: 50
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
## 2 Sepal.Width 0 1 3.06 0.436 2 2.8 3 3.3 4.4 ▁▆▇▂▁
## 3 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
## 4 Petal.Width 0 1 1.20 0.762 0.1 0.3 1.3 1.8 2.5 ▇▁▇▅▃
skim(dplyr::starwars)
## ── Data Summary ────────────────────────
## Values
## Name dplyr::starwars
## Number of rows 87
## Number of columns 14
## _______________________
## Column type frequency:
## character 8
## list 3
## numeric 3
## ________________________
## Group variables None
##
## ── Variable type: character ────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate min max empty n_unique whitespace
## 1 name 0 1 3 21 0 87 0
## 2 hair_color 5 0.943 4 13 0 12 0
## 3 skin_color 0 1 3 19 0 31 0
## 4 eye_color 0 1 3 13 0 15 0
## 5 sex 4 0.954 4 14 0 4 0
## 6 gender 4 0.954 8 9 0 2 0
## 7 homeworld 10 0.885 4 14 0 48 0
## 8 species 4 0.954 3 14 0 37 0
##
## ── Variable type: list ─────────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate n_unique min_length max_length
## 1 films 0 1 24 1 7
## 2 vehicles 0 1 11 0 2
## 3 starships 0 1 17 0 5
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 height 6 0.931 174. 34.8 66 167 180 191 264 ▁▁▇▅▁
## 2 mass 28 0.678 97.3 169. 15 55.6 79 84.5 1358 ▇▁▁▁▁
## 3 birth_year 44 0.494 87.6 155. 8 35 52 72 896 ▇▁▁▁▁
skim(iris) %>%
summary()
## ── Data Summary ────────────────────────
## Values
## Name iris
## Number of rows 150
## Number of columns 5
## _______________________
## Column type frequency:
## factor 1
## numeric 4
## ________________________
## Group variables None
skim(iris, Sepal.Length, Petal.Length)
## ── Data Summary ────────────────────────
## Values
## Name iris
## Number of rows 150
## Number of columns 5
## _______________________
## Column type frequency:
## numeric 2
## ________________________
## Group variables None
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 Sepal.Length 0 1 5.84 0.828 4.3 5.1 5.8 6.4 7.9 ▆▇▇▅▂
## 2 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
skim()
can handle data that has been grouped using
dplyr::group_by()
.
iris %>%
dplyr::group_by(Species) %>%
skim()
## ── Data Summary ────────────────────────
## Values
## Name Piped data
## Number of rows 150
## Number of columns 5
## _______________________
## Column type frequency:
## numeric 4
## ________________________
## Group variables Species
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable Species n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 Sepal.Length setosa 0 1 5.01 0.352 4.3 4.8 5 5.2 5.8 ▃▃▇▅▁
## 2 Sepal.Length versicolor 0 1 5.94 0.516 4.9 5.6 5.9 6.3 7 ▂▇▆▃▃
## 3 Sepal.Length virginica 0 1 6.59 0.636 4.9 6.22 6.5 6.9 7.9 ▁▃▇▃▂
## 4 Sepal.Width setosa 0 1 3.43 0.379 2.3 3.2 3.4 3.68 4.4 ▁▃▇▅▂
## 5 Sepal.Width versicolor 0 1 2.77 0.314 2 2.52 2.8 3 3.4 ▁▅▆▇▂
## 6 Sepal.Width virginica 0 1 2.97 0.322 2.2 2.8 3 3.18 3.8 ▂▆▇▅▁
## 7 Petal.Length setosa 0 1 1.46 0.174 1 1.4 1.5 1.58 1.9 ▁▃▇▃▁
## 8 Petal.Length versicolor 0 1 4.26 0.470 3 4 4.35 4.6 5.1 ▂▂▇▇▆
## 9 Petal.Length virginica 0 1 5.55 0.552 4.5 5.1 5.55 5.88 6.9 ▃▇▇▃▂
## 10 Petal.Width setosa 0 1 0.246 0.105 0.1 0.2 0.2 0.3 0.6 ▇▂▂▁▁
## 11 Petal.Width versicolor 0 1 1.33 0.198 1 1.2 1.3 1.5 1.8 ▅▇▃▆▁
## 12 Petal.Width virginica 0 1 2.03 0.275 1.4 1.8 2 2.3 2.5 ▂▇▆▅▇
iris %>%
skim() %>%
dplyr::filter(numeric.sd > 1)
## ── Data Summary ────────────────────────
## Values
## Name Piped data
## Number of rows 150
## Number of columns 5
## _______________________
## Column type frequency:
## numeric 1
## ________________________
## Group variables None
##
## ── Variable type: numeric ──────────────────────────────────────────────────────────────────────────
## skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
## 1 Petal.Length 0 1 3.76 1.77 1 1.6 4.35 5.1 6.9 ▇▁▆▇▂
Simply skimming a data frame will produce the horizontal print layout
shown above. We provide a knit_print
method for the types of objects
in this package so that similar results are produced in documents. To
use this, make sure the skimmed
object is the last item in your code
chunk.
faithful %>%
skim()
Name | Piped data |
Number of rows | 272 |
Number of columns | 2 |
_______________________ | |
Column type frequency: | |
numeric | 2 |
________________________ | |
Group variables | None |
Data summary
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
eruptions | 0 | 1 | 3.49 | 1.14 | 1.6 | 2.16 | 4 | 4.45 | 5.1 | ▇▂▂▇▇ |
waiting | 0 | 1 | 70.90 | 13.59 | 43.0 | 58.00 | 76 | 82.00 | 96.0 | ▃▃▂▇▂ |
Although skimr provides opinionated defaults, it is highly customizable. Users can specify their own statistics, change the formatting of results, create statistics for new classes and develop skimmers for data structures that are not data frames.
Users can specify their own statistics using a list combined with the
skim_with()
function factory. skim_with()
returns a new skim
function that can be called on your data. You can use this factory to
produce summaries for any type of column within your data.
Assignment within a call to skim_with()
relies on a helper function,
sfl
or skimr
function list. By default, functions in the sfl
call
are appended to the default skimmers, and names are automatically
generated as well.
my_skim <- skim_with(numeric = sfl(mad))
my_skim(iris, Sepal.Length)
But you can also helpers from the tidyverse
to create new anonymous
functions that set particular function arguments. The behavior is the
same as in purrr
or dplyr
, with both .
and .x
as acceptable
pronouns. Setting the append = FALSE
argument uses only those
functions that you’ve provided.
my_skim <- skim_with(
numeric = sfl(
iqr = IQR,
p01 = ~ quantile(.x, probs = .01)
p99 = ~ quantile(., probs = .99)
),
append = FALSE
)
my_skim(iris, Sepal.Length)
And you can remove default skimmers by setting them to NULL
.
my_skim <- skim_with(numeric = sfl(hist = NULL))
my_skim(iris, Sepal.Length)
skimr
has summary functions for the following types of data by
default:
numeric
(which includes bothdouble
andinteger
)character
factor
logical
complex
Date
POSIXct
ts
AsIs
skimr
also provides a small API for writing packages that provide
their own default summary functions for data types not covered above. It
relies on R S3 methods for the get_skimmers
function. This function
should return a sfl
, similar to customization within skim_with()
,
but you should also provide a value for the class
argument. Here’s an
example.
get_skimmers.my_data_type <- function(column) {
sfl(
.class = "my_data_type",
p99 = quantile(., probs = .99)
)
}
We are aware that there are issues with rendering the inline histograms and line charts in various contexts, some of which are described below.
There are known issues with printing the spark-histogram characters when
printing a data frame. For example, "▂▅▇"
is printed as
"<U+2582><U+2585><U+2587>"
. This longstanding problem originates in
the low-level
code for
printing dataframes. While some cases have been addressed, there are,
for example, reports of this issue in Emacs ESS. While this is a deep
issue, there is ongoing work to address it in base
R.
This means that while skimr
can render the histograms to the console
and in RMarkdown documents, it cannot in other circumstances. This
includes:
- converting a
skimr
data frame to a vanilla R data frame, but tibbles render correctly - in the context of rendering to a pdf using an engine that does not support utf-8.
One workaround for showing these characters in Windows is to set the
CTYPE part of your locale to Chinese/Japanese/Korean with
Sys.setlocale("LC_CTYPE", "Chinese")
. The helper function
fix_windows_histograms()
does this for you.
And last but not least, we provide skim_without_charts()
as a
fallback. This makes it easy to still get summaries of your data, even
if unicode issues continue.
Spark-bar and spark-line work in the console, but may not work when you
knit them to a specific document format. The same session that produces
a correctly rendered HTML document may produce an incorrectly rendered
PDF, for example. This issue can generally be addressed by changing
fonts to one with good building block (for histograms) and Braille
support (for line graphs). For example, the open font “DejaVu Sans” from
the extrafont
package supports these. You may also want to try
wrapping your results in knitr::kable()
. Please see the vignette on
using fonts for details.
Displays in documents of different types will vary. For example, one user found that the font “Yu Gothic UI Semilight” produced consistent results for Microsoft Word and Libre Office Write.
The earliest use of unicode characters to generate sparklines appears to be from 2009.
Exercising these ideas to their fullest requires a font with good support for block drawing characters. PragamataPro is one such font.
We welcome issue reports and pull requests, including potentially adding support for commonly used variable classes. However, in general, we encourage users to take advantage of skimr’s flexibility to add their own customized classes. Please see the contributing and conduct documents.