Skip to content

Commit

Permalink
Added new transforms submodules and fill_scale_tril.py transform to c…
Browse files Browse the repository at this point in the history
…onvert vectors into lower triangular matrices
  • Loading branch information
LuisA92 committed Apr 25, 2024
1 parent 3d82b9a commit 4979d9e
Show file tree
Hide file tree
Showing 3 changed files with 116 additions and 0 deletions.
5 changes: 5 additions & 0 deletions src/rs_distributions/transforms/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from .fill_scale_tril import FillScaleTriL

__all__ = [
"FillScaleTriL",
]
84 changes: 84 additions & 0 deletions src/rs_distributions/transforms/fill_scale_tril.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import torch
from torch.distributions import Transform, constraints
from torch.distributions.transforms import SoftplusTransform
from torch.distributions.utils import vec_to_tril_matrix, tril_matrix_to_vec


class FillScaleTriL(Transform):
def __init__(self, diag_transform=None, diag_shift=1e-05):
"""
Converts a tensor into a lower triangular matrix with positive diagonal entries.
Args:
diag_transform: transformation used on diagonal to ensure positive values.
Default is SoftplusTransform
diag_shift (float): small offset to avoid diagonals very close to zero.
Default offset is 1e-05
"""
super().__init__()
self.diag_transform = (
diag_transform if diag_transform is not None else SoftplusTransform()
)
self.diag_shift = diag_shift

domain = constraints.real_vector
codomain = constraints.lower_cholesky
bijective = True

def _call(self, x):
"""
Transform input vector to lower triangular.
Args:
x (torch.Tensor): Input vector to transform
Returns:
torch.Tensor: Transformed lower triangular matrix
"""
x = vec_to_tril_matrix(x)
diagonal_elements = x.diagonal(dim1=-2, dim2=-1)
transformed_diagonal = self.diag_transform(diagonal_elements)
if self.diag_shift is not None:
transformed_diagonal += self.diag_shift
x.diagonal(dim1=-2, dim2=-1).copy_(transformed_diagonal)
return x

def _inverse(self, y):
"""
Apply the inverse transformation to the input lower triangular matrix.
Args:
y (torch.Tensor): Invertible lower triangular matrix
Returns:
torch.Tensor: Inversely transformed vector
"""
diagonal_elements = y.diagonal(dim1=-2, dim2=-1)
if self.diag_shift is not None:
transformed_diagonal = self.diag_transform.inv(
diagonal_elements - self.diag_shift
)
else:
transformed_diagonal = self.diag_transform.inv(diagonal_elements)
y.diagonal(dim1=-2, dim2=-1).copy_(transformed_diagonal)
return tril_matrix_to_vec(y)

def log_abs_det_jacobian(self, x, y):
"""
Computes the log absolute determinant of the Jacobian matrix for the transformation.
Assumes that Softplus is used on the diagonal.
The derivative of the softplus function is the sigmoid function.
Args:
x (torch.Tensor): Input vector before transformation
y (torch.Tensor): Output lower triangular matrix from _call
Returns:
torch.Tensor: Log absolute determinant of the Jacobian matrix
"""
diag_elements = y.diagonal(dim1=-2, dim2=-1)
derivatives = torch.sigmoid(diag_elements)
log_det_jacobian = torch.log(derivatives).sum()
return log_det_jacobian
27 changes: 27 additions & 0 deletions tests/transforms/fill_scale_tril.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
import pytest
from rs_distributions.transforms.fill_scale_tril import FillScaleTriL
import torch
from torch.distributions.constraints import lower_cholesky


@pytest.mark.parametrize("input_shape", [(6,), (10,)])
def test_forward_transform(input_shape):
transform = FillScaleTriL()
input_vector = torch.randn(input_shape)
transformed_vector = transform._call(input_vector)

assert isinstance(transformed_vector, torch.Tensor)
assert transformed_vector.shape == (
(-1 + torch.sqrt(torch.tensor(1 + input_shape[0] * 8))) / 2,
(-1 + torch.sqrt(torch.tensor(1 + input_shape[0] * 8))) / 2,
)
assert lower_cholesky.check(transformed_vector)


@pytest.mark.parametrize("input_vector", [torch.randn(3), torch.randn(6)])
def test_forward_equals_inverse(input_vector):
transform = FillScaleTriL()
L = transform._call(input_vector)
invL = transform._inverse(L)

assert torch.allclose(input_vector, invL, atol=1e-6)

0 comments on commit 4979d9e

Please sign in to comment.