Skip to content

Commit

Permalink
bump up to 0.0.10
Browse files Browse the repository at this point in the history
  • Loading branch information
Lucas Camillo authored and Lucas Camillo committed Dec 28, 2023
1 parent 2e4f506 commit 0cd95da
Show file tree
Hide file tree
Showing 22 changed files with 1,178 additions and 503 deletions.
174 changes: 174 additions & 0 deletions clocks/notebooks/hrsinchphenoage.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ae756043-21a3-46e9-9fd8-1e5449eba9cb",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"import pyaging as pya\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "46c6fc26-9a6b-4027-bd01-601b70eb401a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.system(\"git clone https://github.com/MorganLevineLab/methylCIPHER.git\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ef41c1be-5a8b-463f-914c-3f74fcc04465",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('methylCIPHER/data-raw/HRSInChPhenoAge_CpG.csv')\n",
"\n",
"df['feature'] = df['CpG']\n",
"df['coefficient'] = df['Weight']"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "aeadf8d3-e31b-4e44-9928-39cb3986deb0",
"metadata": {},
"outputs": [],
"source": [
"features = df['feature'].tolist()\n",
"\n",
"weights = torch.tensor(df['coefficient'].tolist()).unsqueeze(0)\n",
"intercept = torch.tensor([52.8334080])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1b43e476-72ef-43fd-9871-f41d95c8b269",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearModel(\n",
" (linear): Linear(in_features=959, out_features=1, bias=True)\n",
")"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = pya.models.LinearModel(len(features))\n",
"\n",
"model.linear.weight.data = weights\n",
"model.linear.bias.data = intercept\n",
"\n",
"model"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4f437c4e-313a-401a-8e30-6e68ad397fc4",
"metadata": {},
"outputs": [],
"source": [
"weights_dict = {\n",
" 'preprocessing': None, \n",
" 'preprocessing_helper': None,\n",
" 'postprocessing': None,\n",
" 'postprocessing_helper': None,\n",
" 'features': features,\n",
" 'weight_dict': model.state_dict(),\n",
"}\n",
"\n",
"metadata_dict = {\n",
" 'species': 'Homo sapiens',\n",
" 'data_type': 'methylation',\n",
" 'year': 2022,\n",
" 'implementation_approved_by_author(s)': '⌛',\n",
" 'preprocessing': weights_dict['preprocessing'], \n",
" 'postprocessing': weights_dict['postprocessing'], \n",
" 'citation': \"Higgins-Chen, Albert T., et al. \\\"A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking.\\\" Nature aging 2.7 (2022): 644-661.\",\n",
" 'doi': \"https://doi.org/10.1038/s43587-022-00248-2\",\n",
" \"notes\": None,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "34136f3c-92b8-4641-a103-381d3a7dd857",
"metadata": {},
"outputs": [],
"source": [
"torch.save(weights_dict, '../weights/hrsinchphenoage.pt')\n",
"torch.save(metadata_dict, '../metadata/hrsinchphenoage.pt')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d7a8c672-d9f7-487e-af1d-addc55155534",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.system(\"rm -r methylCIPHER\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
2 changes: 1 addition & 1 deletion clocks/notebooks/join_metadata.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"id": "59eb29df-0597-4d45-b2e6-8825670effe2",
"metadata": {},
"outputs": [],
Expand Down
174 changes: 174 additions & 0 deletions clocks/notebooks/knight.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "fb157849-5454-4a60-8548-fff633fff764",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import pandas as pd\n",
"import pyaging as pya\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "46c6fc26-9a6b-4027-bd01-601b70eb401a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.system(\"curl -o coefficients.csv https://static-content.springer.com/esm/art%3A10.1186%2Fs13059-016-1068-z/MediaObjects/13059_2016_1068_MOESM3_ESM.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b9f484b1-f501-41b7-9565-82e03bfe97dc",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('coefficients.csv')\n",
"\n",
"df['feature'] = df['CpGmarker']\n",
"df['coefficient'] = df['CoefficientTraining']"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a284fe99-dc47-4f0c-b2ff-274e136e7020",
"metadata": {},
"outputs": [],
"source": [
"features = df['feature'][1:].tolist()\n",
"\n",
"weights = torch.tensor(df['coefficient'][1:].tolist()).unsqueeze(0)\n",
"intercept = torch.tensor([df['coefficient'][0]])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7b4c3f6b-72af-4e99-84c4-65b8ef58c91d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearModel(\n",
" (linear): Linear(in_features=148, out_features=1, bias=True)\n",
")"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = pya.models.LinearModel(len(features))\n",
"\n",
"model.linear.weight.data = weights\n",
"model.linear.bias.data = intercept\n",
"\n",
"model"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "e32706f0-ce07-455e-bb17-1993c1c0e152",
"metadata": {},
"outputs": [],
"source": [
"weights_dict = {\n",
" 'preprocessing': None, \n",
" 'preprocessing_helper': None,\n",
" 'postprocessing': None,\n",
" 'postprocessing_helper': None,\n",
" 'features': features,\n",
" 'weight_dict': model.state_dict(),\n",
"}\n",
"\n",
"metadata_dict = {\n",
" 'species': 'Homo sapiens',\n",
" 'data_type': 'methylation',\n",
" 'year': 2016,\n",
" 'implementation_approved_by_author(s)': '⌛',\n",
" 'preprocessing': weights_dict['preprocessing'], \n",
" 'postprocessing': weights_dict['postprocessing'], \n",
" 'citation': \"Knight, Anna K., et al. \\\"An epigenetic clock for gestational age at birth based on blood methylation data.\\\" Genome biology 17.1 (2016): 1-11.\",\n",
" 'doi': \"https://doi.org/10.1186/s13059-016-1068-z\",\n",
" \"notes\": None,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "34136f3c-92b8-4641-a103-381d3a7dd857",
"metadata": {},
"outputs": [],
"source": [
"torch.save(weights_dict, '../weights/knight.pt')\n",
"torch.save(metadata_dict, '../metadata/knight.pt')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "303e9b76-993f-4691-af9d-1151b3c7638f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"os.system(\"rm coefficients.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Original file line number Diff line number Diff line change
Expand Up @@ -126,8 +126,8 @@
"metadata": {},
"outputs": [],
"source": [
"torch.save(weights_dict, '../weights/leecpc.pt')\n",
"torch.save(metadata_dict, '../metadata/leecpc.pt')"
"torch.save(weights_dict, '../weights/leecontrol.pt')\n",
"torch.save(metadata_dict, '../metadata/leecontrol.pt')"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,8 +126,8 @@
"metadata": {},
"outputs": [],
"source": [
"torch.save(weights_dict, '../weights/leerefinedrpc.pt')\n",
"torch.save(metadata_dict, '../metadata/leerefinedrpc.pt')"
"torch.save(weights_dict, '../weights/leerefinedrobust.pt')\n",
"torch.save(metadata_dict, '../metadata/leerefinedrobust.pt')"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,8 +126,8 @@
"metadata": {},
"outputs": [],
"source": [
"torch.save(weights_dict, '../weights/leerpc.pt')\n",
"torch.save(metadata_dict, '../metadata/leerpc.pt')"
"torch.save(weights_dict, '../weights/leerobust.pt')\n",
"torch.save(metadata_dict, '../metadata/leerobust.pt')"
]
},
{
Expand Down
Loading

0 comments on commit 0cd95da

Please sign in to comment.